Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T21:17:56.288Z Has data issue: false hasContentIssue false

Deformation and fracture of a directionally solidified NiAl–28Cr–6Mo eutectic alloy

Published online by Cambridge University Press:  03 March 2011

X.F. Chen*
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37996-2200
D.R. Johnson
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37996-2200
R.D. Noebe
Affiliation:
NASA-Lewis Research Center, Cleveland, Ohio 44135
B.F. Oliver
Affiliation:
Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37996-2200
*
a)Visiting scholar from Materials Science Department, Shanghai Jiao Tong University, People's Republic of China.
Get access

Abstract

A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a 〈111〉 growth direction for both the NiAl and (Cr,Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture process.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, D. R., Chen, X. F., Oliver, B. F., Noebe, R. D., and Whittenberger, J. D., Intermetallics (1994, in press).Google Scholar
2Noebe, R. D., Misra, A., and Gibala, R., ISIJ Int. 31, 1172 (1991).CrossRefGoogle Scholar
3Chang, K-M., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 191.Google Scholar
4Cline, H. E. and Walter, J. L., Metall. Trans. 1, 2907 (1970).CrossRefGoogle Scholar
5Cline, H. E., Walter, J. L., Lifshin, F., and Russell, R. R., Metall. Trans. 2, 189 (1971).CrossRefGoogle Scholar
6Heredia, F. E., He, M. Y., Lucas, C. E., Evans, A. G., Deve, H. E., and Konitzer, D., Acta Metall. Mater. 41, 505 (1993).CrossRefGoogle Scholar
7Kumar, K. S., Mannan, S. K., and Viswanadham, R. K., Acta Metall. Mater. 40, 1201 (1992).CrossRefGoogle Scholar
8Heredia, F. E. and Valencia, J. J., in Intermetallic Matrix Composites II, edited by Miracle, D. B., Anton, D. L., and Graves, J. A. (Mater. Res. Soc. Symp. Proc. 273, Pittsburgh, PA, 1992), p. 197.Google Scholar
9Walter, J. L., Cline, H. E., and Koch, E. F., Trans. AIME 245, 2073 (1969).Google Scholar
10Cline, H. E., Walter, J. L., Koch, E. F., and Osika, L. M., Acta Metall. 19, 405 (1971).Google Scholar
11Noebe, R. D., Bowman, R. R., Kim, J. T., Larsen, M., and Gibala, R., in High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., Johnson, L. A., Pope, D. P., and Steigler, J. O. (The Minerals, Metals & Materials Society, Warrendale, PA, 1990), p. 271.Google Scholar
12Bowman, R. R., Noebe, R. D., Raj, S. V., and Locci, I. E., Metall. Trans. 23A, 1493 (1992).CrossRefGoogle Scholar
13Chen, X. F., Johnson, D. R., and Oliver, B. F., Scripta Metall. Mater. 30, 975 (1994).CrossRefGoogle Scholar
14Cotton, J. D., Noebe, R. D., and Kaufman, M. J., Intermetallics 1, 117 (1993).CrossRefGoogle Scholar
15Ball, A. and Smallman, R. E., Acta Metall. 14, 1517 (1966).Google Scholar
16Loretto, M. H. and Wasilewski, R. J., Philos. Mag. 23, 1311 (1971).CrossRefGoogle Scholar
17Noebe, R. D. and Gibala, R., Scripta Metall. 20, 1635 (1986).CrossRefGoogle Scholar
18Hack, J. E., Brzeski, J. M., and Darolia, R., Scripta Metall. Mater. 27, 1259 (1992).Google Scholar
19Morris, M. A., Perez, J-F., and Darolia, R., Philos. Mag. A 69, 507 (1994).Google Scholar