Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T02:49:17.249Z Has data issue: false hasContentIssue false

Decomposition behavior of Ln2Mn4/3W2/3O7 (Ln = Eu and Er) in reducing atmosphere and their thermodynamic properties

Published online by Cambridge University Press:  31 January 2011

Taroh Atsumi
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tenpaku-cho, Toyohashi 441, Japan.
Naoki Kamegashira
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tenpaku-cho, Toyohashi 441, Japan.
Get access

Abstract

Decomposition behavior of Ln2Mn4/3W2/3O7 (Ln = Eu and Er) in reducing atmosphere at 1273 K was determined. These compounds decomposed to LnMnO3 and Ln2MnWO7 at PO2 = 10−8.46 atm for Ln = Eu and 10−7.46 atmosphere for Ln = Er, respectively. Decomposition product Eu2MnWO7 decomposed to Eu2MnWO6 at PO2 = 10−15.67 atm, while Er2MnWO7 decomposed to Er2O3, MnO, and W less than 10−17 atm. The standard Gibbs free energy changes of decomposition for Eu2Mn4/3W2/3O7, Eu2MnWO7, and Er2Mn4/3W2/3O7 at 1273 K were determined to be 34.4 kJ · mol−1, 191.9 kJ · mol−1, and 44.8 kJ · mol−1, respectively. The standard Gibbs free energy changes of formation of Er2Mn4/3W2/3O7 and Er2MnWO7 were also determined to be −2429.5 and −2463.2 kJ · mol−1 at 1273 K, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Blasse, G., Bril, A., and Nieuwpoort, W. C., J. Phys. Chem. Solids 27, 1587 (1966).Google Scholar
2.Nath, D. K., Inorg. Chem. 9, 2714 (1970).CrossRefGoogle Scholar
3.Faurie, J. P., Boulon, G., and Delaigue, M. C., J. Solid State Chem. 17, 7 (1976).Google Scholar
4.Subramanian, M. A., Aravamudan, G., and Rao, G. V. Subba, Mater. Res. Bull. 14, 1457 (1979).Google Scholar
5.Bazuev, G. V., Shveikin, G. P., Makarova, O. V., and Abuzova, T. I., Dokl. Akad. Nauk SSSR 265, 1134 (1982).Google Scholar
6.Casado, P. García and Mendioola, A., J. Phys. Chem. Solids 46, 921 (1985).CrossRefGoogle Scholar
7.Bazuev, G. V., Makarova, O. V., and Shveikin, G. P., Izv. Akad. Nauk SSSR, Neorg. Mater. 24, 88 (1988).Google Scholar
8.Basile, F., Poix, P., and Michel, A., Ann. Cbim. 2, 283 (1977).Google Scholar
9.Subramanian, M. A., Aravamudan, G., and Rao, G. V. Subba, Prog. Solid State Chem. 15, 55 (1983).Google Scholar
10.Bazuev, G. V., Makarova, O. V., and Kirsanov, N. A., Zhur. Neorg. Khim. 34, 13 (1989).Google Scholar
11.Bazuev, G. V., Makarova, O. V., and Shveikin, G. P., Zhur. Neorg. Khim. 28, 1919 (1983).Google Scholar
12.Atsumi, T., Ohgushi, T., and Kamegashira, N., J. Alloys and Compounds 238, 35 (1996).CrossRefGoogle Scholar
13.Charette, G. G. and Flengas, S. N., J. Electrochem. Soc. 115, 796 (1968).CrossRefGoogle Scholar
14.Greedan, J. E., McCarthy, G. J., and Sipe, C., Inorg. Chem. 14, 775 (1975).CrossRefGoogle Scholar
15.Levitskii, V. A., Kimenko, A. N., Marin, V. P., Chentsov, V. N., and Yu.Men'shenin, V., Russ. J. Chem. 58, 818 (1984).Google Scholar
16.Robie, R. A., Hemingway, B. S., and Fisher, J. R., “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature,” United States Government Printing Office, Washington, DC, 1978.Google Scholar