Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T05:43:14.075Z Has data issue: false hasContentIssue false

Decomposition and thermodynamic property of metastable Fe–Zn solid solutions produced by mechanical alloying

Published online by Cambridge University Press:  31 January 2011

F. Zhou*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, California 92697-2575
Y. T. Chou
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, California 92697-2575
E. J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California at Davis, California 95616-5294, and Department of Chemical Engineering and Materials Science, University of California at Irvine, Irvine, California 92697-2575
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

Thermal decomposition of supersaturated single-phase body-centered cubic (bcc) Fe100−xZnx (5≤ x ≤65 at.%) solid solutions, processed via mechanical alloying of high-purity metal powders, was investigated using x-ray diffraction and differential scanning calorimetry (DSC). At elevated temperatures the metastable solid solution decomposed into a stable equilibrium aggregate consisting of the pure bcc Fe phase and an intermetallic compound Fe4Zn9. The decomposition temperature decreased with increasing Zn concentration. The enthalpy of decomposition for various Fe–Zn solid solutions measured by the DSC was in the range of 1.2–3.5 kJ/mol. The enthalpy of mixing of the as-milled solid solutions from elemental Fe and Zn powders was estimated to be 0.5–1.7 kJ/mol. In addition, the activation energies of decomposition for these solid solutions were determined on the basis of the Kissinger analysis, and their values appeared to be independent of the Zn concentration in the alloy, with an average of 147 ± 17 kJ/mol.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kochs, C.C., Mater. Trans. JIM 36, 85 (1995).CrossRefGoogle Scholar
2.Suryanarayana, C., Prog. Mater. Sci. 46, 1 (2001).CrossRefGoogle Scholar
3.Ma, E. and Atzmon, M., Mater. Chem. Phys. 39, 249 (1995).CrossRefGoogle Scholar
4.Yavari, A.R., Desré, P.J., and Benameur, T., Phys. Rev. Lett. 68,2235 (1992).CrossRefGoogle Scholar
5.Gente, C., Oehring, M., and Bormann, R., Phys. Rev. B 48, 13244 (1993).CrossRefGoogle Scholar
6.Bellon, P. and Averback, R.S., Phys. Rev. Lett. 74, 1819 (1995).CrossRefGoogle Scholar
7.Ma, E., He, J.H., and Schilling, P.J., Phys. Rev. B 55, 5542 (1997).CrossRefGoogle Scholar
8.Ma, E., Sheng, H.W., He, J.H., and Schilling, P.J., Mater. Sci. Eng., A286, 48 (2000).CrossRefGoogle Scholar
9.Sheng, H.W., Zhou, F., Hu, Z.Q., and Lu, K., J. Mater. Res. 13, 308 (1998).CrossRefGoogle Scholar
10.Zhou, F., Sheng, H.W., and Lu, K., J. Mater. Res. 13, 249 (1998).CrossRefGoogle Scholar
11.Eckert, J., Holzer, J.C., and Johnson, W.L., J. Appl. Phys. 73, 131 (1993).CrossRefGoogle Scholar
12.Ma, E. and Atzmon, M., J. Appl. Phys. 74, 955 (1993).CrossRefGoogle Scholar
13.Klassen, T., Herr, U., and Averback, R.S., Acta Mater. 45, 2921 (1997).CrossRefGoogle Scholar
14.Burton, B.P. and Perrot, P., in Phase Diagrams of Binary Iron Alloys, edited by Okamoto, H. (ASM International, Materials Park, OH, 1993), p. 459.Google Scholar
15.Miedema, A.R., Chatel, P.F. de, and Boer, F.R. de, Physica B 100, 1 (1980).CrossRefGoogle Scholar
16.Bansal, C., Gao, Z.Q., Hong, L.B., and Fultz, B., J. Appl. Phys. 76,5961 (1994).CrossRefGoogle Scholar
17.Sumiyama, K. and Nakamura, Y., IEEE Transl. J. Magn. Jpn. TJMJ–1, 1099 (1985).CrossRefGoogle Scholar
18.Zhou, F., Chou, Y.T., and Lavernia, E.J., Mater. Trans. 42, 1566 (2001).CrossRefGoogle Scholar
19.Zhou, F., Chou, Y.T., and Lavernia, E.J., in Science and Technology of Interfaces, International Symposium in Honor of Dr. Bhakta Rath, edited by Ankem, S., Pande, C.S., Ovid’ko, I., and Ranganathan, R. (The Minerals, Metals and Materials Society, Warrendale, PA,2002), p. 21.CrossRefGoogle Scholar
20.Speich, G.R., Zwell, L., and Wriedt, H.A., Trans. Metall. Soc. AIME 230, 939 (1964).Google Scholar
21.Zhang, X., Wang, H., Kassem, M., Narayan, J., and Koch, C., J. Mater. Res. 16, 3485 (2001).CrossRefGoogle Scholar
22.Hong, L.B. and Fultz, B., J. Appl. Phys. 79, 3946 (1996).CrossRefGoogle Scholar
23.Gellings, P.J., Koster, D., Kuit, J., and Fransen, T., Z. Metallkd. 71,150 (1980).Google Scholar
24.Swalin, R.,Thermodynamics of Solids (John Wiley & Sons, Inc., New York, 1962), p. 8.Google Scholar
25.Murty, B.S. and Ranganathan, S., Int. Mater. Rev. 43, 101 (1998).CrossRefGoogle Scholar
26.Kissinger, H.E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
27.Richter, I. and Feller-Kniepmeier, M., Phys. Status Solidi A 68,289 (1981).CrossRefGoogle Scholar
28.Brandes, E.A. and Brook, G.B.,Smithells Metals Reference Book(Butterworth-Heinemann Ltd., Oxford, U.K., 1992), p. 13–1.Google Scholar