Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T22:05:23.830Z Has data issue: false hasContentIssue false

Cyclic deformation behavior of austenitic stainless steels in the very high cycle fatigue regime—Experimental results and mechanism-based simulations

Published online by Cambridge University Press:  08 August 2017

Philipp-M. Hilgendorff
Affiliation:
Institut für Mechanik und Regelungstechnik—Mechatronik, Universität Siegen, Siegen 57068, Germany
Andrei C. Grigorescu
Affiliation:
Institut für Werkstofftechnik, Universität Siegen, Siegen 57068, Germany
Martina Zimmermann
Affiliation:
Institut für Werkstoffwissenschaft, Technische Universität Dresden, Dresden 01069, Germany
Claus-Peter Fritzen
Affiliation:
Institut für Mechanik und Regelungstechnik—Mechatronik, Universität Siegen, Siegen 57068, Germany
Hans-Juergen Christ*
Affiliation:
Institut für Werkstofftechnik, Universität Siegen, Siegen 57068, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Two austenitic stainless steels of strongly different stacking fault energies (SFEs) and correspondingly different stabilities of the austenite phase were studied with respect to their very high cycle fatigue (VHCF) behavior. The metastable austenitic stainless steel 304L shows a very pronounced transient behavior and a fatigue limit in the VHCF regime. The higher SFE of the 316L steel results in a less pronounced transient cyclic deformation behavior. The plastic shear is more localized, and the formation of deep intrusions leads to microcrack initiation. However, the propagation of such microcracks is impeded by α′-martensite formed very localized within the shear bands. A comprehensive description of the microstructural changes governing the cyclic deformation including the transient resonant behavior was developed and transferred into a mechanism-based model. Simulation results were correlated with the observed deformation evolution and the change of the resonant behavior of specimens during VHCF loading providing a profound understanding of the VHCF-specific deformation behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Mathias Göken

References

REFERENCES

Murakami, Y., Yokoyama, N.N., and Nagata, J.: Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Eng. Mater. Struct. 25, 735746 (2002).CrossRefGoogle Scholar
Stanzl-Tschegg, S., Mughrabi, H., and Schönbauer, B.: Life time and cyclic slip of copper in the VHCF regime. Int. J. Fatigue 29, 20502059 (2007).CrossRefGoogle Scholar
Bathias, C., Drouillac, L., and Le Francois, P.: How and why the fatigue S–N curve does not approach a horizontal asymptote. Int. J. Fatigue 23, 143151 (2001).CrossRefGoogle Scholar
Lukas, P. and Kunz, L.: Specific features of high-cycle and ultra-high-cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 25, 747753 (2002).CrossRefGoogle Scholar
Mughrabi, H.: On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 25, 755764 (2002).CrossRefGoogle Scholar
Müller-Bollenhagen, C., Zimmermann, M., and Christ, H-J.: Adjusting the very high cycle fatigue properties of a metastable austenitic stainless steel by means of the martensite content. Process Eng. 2, 16631672 (2010).Google Scholar
Takahashi, K. and Ogawa, T.: Evaluation of gigacycle fatigue properties of austenitic stainless steels using ultrasonic fatigue test. J. Solid Mech. Mater. Eng. 2, 366373 (2008).CrossRefGoogle Scholar
Carstensen, J.V., Mayer, H., and Brondsted, P.: Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel. Fatigue Fract. Eng. Mater. Struct. 25, 837844 (2002).CrossRefGoogle Scholar
Müller-Bollenhagen, C., Zimmermann, M., and Christ, H-J.: Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite. Int. J. Fatigue 32, 936942 (2010).CrossRefGoogle Scholar
Needleman, A. and Van der Giessen, E.: Discrete dislocation and continuum descriptions of plastic flow. Mater. Sci. Eng., A 309–310, 113 (2001).CrossRefGoogle Scholar
Abraham, F.F., Walkup, R., Gao, H., Duchaineau, M., Diaz de la Rubia, T., and Seager, M.: Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Work-hardening. Proc. Natl. Acad. Sci. U. S. A. 99, 57835787 (2002).CrossRefGoogle ScholarPubMed
Tanaka, K. and Mura, T.: A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97103 (1981).CrossRefGoogle Scholar
Lin, T.: Micromechanics of crack initiation in high-cycle fatigue. Adv. Appl. Mech. 29, 162 (1992).Google Scholar
Man, J., Obrtlík, K., and Polák, J.: Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos. Mag. 89, 12951336 (2009).CrossRefGoogle Scholar
Bogers, A. and Burgers, W.: Partial dislocations on the {110} planes in the B.C.C. lattice and the transition of the F.C.C. into the B.C.C. lattice. Acta Metall. 12, 255261 (1964).CrossRefGoogle Scholar
Olson, G. and Cohen, M.: A mechanism for the strain-induced nucleation of martensitic transformations. J. Less-Common Met. 28, 107118 (1972).CrossRefGoogle Scholar
Schramm, R.E. and Reed, R.P.: Stacking fault energy of seven commercial austenitic stainless steels. Metall. Trans. A 6, 13451351 (1975).CrossRefGoogle Scholar
Nohara, K., Ono, Y., and Ohashi, N.: Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels. J. Iron Steel Inst. Jpn. 63, 772782 (1977).CrossRefGoogle Scholar
Grigorescu, A.C., Hilgendorff, P-M., Zimmermann, M., Fritzen, C-P., and Christ, H-J.: Cyclic deformation behaviour of austenitic Cr–Ni–steels in the VHCF regime: Part I—Experimental study. Int. J. Fatigue 93, 250260 (2016).CrossRefGoogle Scholar
Nikitin, I. and Besel, M.: Effect of low-frequency on fatigue behaviour of austenitic steel AISI 304 at room temperature and 25 °C. Int. J. Fatigue 30, 20442049 (2008).CrossRefGoogle Scholar
Straub, T.: Experimental investigation of crack initiation in face-centered cubic materials in the high and very high cycle fatigue regime. Doctorate thesis, Schriftenreihe des Instituts für angewandte Materialien, Karlsruhe, 2016.Google Scholar
Gerold, V. and Karnthaler, H.: On the origin of planar slip in f.c.c. alloys. Acta Metall. 37, 21772183 (1989).CrossRefGoogle Scholar
Hilgendorff, P-M., Grigorescu, A., Zimmermann, M., Fritzen, C-P., and Christ, H-J.: Cyclic deformation behaviour of austenitic Cr–Ni–steels in the VHCF regime: Part II—Microstructure-sensitive simulation. Int. J. Fatigue 93, 261271 (2016).CrossRefGoogle Scholar
Hilgendorff, P-M., Grigorescu, A., Zimmermann, M., Fritzen, C-P., and Christ, H-J.: Simulation of irreversible damage accumulation in the very high cycle fatigue (VHCF) regime using the boundary element method. Mater. Sci. Eng., A 575, 169176 (2013).CrossRefGoogle Scholar
Hilgendorff, P.M., Grigorescu, A., Zimmermann, M., Fritzen, C.P., and Christ, H.J.: Simulation of the interaction of plastic deformation in shear bands with deformation-induced martensitic phase transformation in the VHCF regime. Key Eng. Mater. 664, 314325 (2015).CrossRefGoogle Scholar