Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T19:59:57.787Z Has data issue: false hasContentIssue false

Cu−Zr−Ti ternary bulk metallic glasses correlated with (L → Cu8Zr3 + Cu10Zr7) univariant eutectic reaction

Published online by Cambridge University Press:  31 January 2011

Chun-Li Dai
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Jing-Wei Deng
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Ze-Xiu Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Jian Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected].
Get access

Abstract

Starting from Cu60Zr30Ti10, the compositional dependence of bulk metallic glass (BMG) formation was revisited in the CuZrTi ternary system. It was revealed that the optimal BMG-forming composition is located at Cu60Zr33Ti7, for which a monolithic BMG rod 4 mm in diameter can be fabricated using copper mold casting. This composition is along, although slightly off, the univariant eutectic groove for the reaction (L → Cu8Zr3 + Cu10Zr7). With respect to the corresponding CuZr binary alloys, Ti has a significant effect on further stabilizing the liquid, thus increasing the glass-forming ability. For the Cu60Zr40−yTiy (3 ⩽ y ⩽ 10) series BMGs, the glass transition temperature Tg decreased with increasing Ti content, at a rate of about 2.8 K/at.%. Among these BMGs, significant compositional dependence of compressive plasticity is not observed, irrespective of the Tg change. Cu60Zr33Ti7 glass exhibits maximum fracture strength around 2160 MPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lin, X.H.Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 6514 1995Google Scholar
2Inoue, A., Zhang, W., Zhang, T.Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 2001CrossRefGoogle Scholar
3Lee, J.C., Kim, Y.C., Ahn, J.P., Lee, S.Lee, B.J.: Strain hardening of an amorphous matrix composite due to deformation induced nanocrystallization during quasistatic compression. Appl. Phys. Lett. 84, 2781 2004CrossRefGoogle Scholar
4Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H.Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005Google Scholar
5Wesseling, P., Nieh, T.G., Wang, W.H.Lewandowski, J.J.: Preliminary assessment of flow, notch toughness, and high temperature behavior of Cu60Zr20Hf10Ti10 bulk metallic glass. Scripta Mater. 51, 151 2004Google Scholar
6Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R.Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 2005Google Scholar
7Xu, D.H., Duan, G.Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 2004Google Scholar
8Lee, S.W., Huh, M.Y., Fleury, E.Lee, J.C.: Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 54, 349 2006CrossRefGoogle Scholar
9Dai, C.L., Guo, H., Shen, Y., Li, Y., Ma, E.Xu, J.: A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater. 54, 1403 2006Google Scholar
10Men, H., Fu, J.Y., Pang, S.J., Ma, C.L.Zhang, T.: Formation and thermal stability of Cu46.25Zr44.25Al7.5Er2 bulk metallic glass with a diameter of 12 mm. Mater. Trans. 47, 2882 2006Google Scholar
11Jia, P., Guo, H., Li, Y., Xu, J.Ma, E.: A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Mater. 54, 2165 2006Google Scholar
12Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K.Ma, E.: Bulk metallic glass formation in the binary Cu–Zr system. Appl. Phys. Lett. 84, 4029 2004CrossRefGoogle Scholar
13Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L.Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series-Cu100−xZrx (x = 34, 36 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 2004Google Scholar
14Inoue, A.Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr and Cu–Hf binary glassy alloy rods. Mater. Trans. 45, 584 2004CrossRefGoogle Scholar
15Duan, G., Xu, D.H.Johnson, W.L.: High copper content bulk glass formation in bimetallic Cu–Hf system. Metall. Mater. Trans. A 36, 455 2005Google Scholar
16Inoue, A.Zhang, W.: Formation, thermal stability and mechanical properties of Cu–Zr–Al bulk glassy alloys. Mater. Trans. 43, 2921 2002Google Scholar
17Zhang, W.Inoue, A.: High glass-forming ability and good mechanical properties of new bulk glassy alloys in Cu–Zr–Ag ternary system. J. Mater. Res. 21, 234 2006CrossRefGoogle Scholar
18Inoue, A.Zhang, W.: Formation and mechanical properties of Cu–Hf–Al bulk glassy alloys with a large supercooled liquid region of over 90 K. J. Mater. Res. 18, 1435 2003CrossRefGoogle Scholar
19Jiang, J.Z., Saida, J., Kato, H., Ohsuna, T.Inoue, A.: Is Cu60Ti10Zr30 a bulk glass-forming alloy? Appl. Phys. Lett. 82, 4041 2003Google Scholar
20Woychik, C.G.Massalski, T.B.: Phase diagram relationships in the system Cu–Zr–Ti. Z. Metallkd. 79, 149 1988Google Scholar
21Conner, R.D.Johnson, W.L.: Composition dependent ductility in the amorphous Zr–Ti–Ni–Cu–Be alloy system. Scripta Mater. 55, 645 2006CrossRefGoogle Scholar
22Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X.Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 2007Google Scholar
23Kumar, G., Ohkubo, T., Mukai, T.Hono, K.: Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scripta Mater. 57, 173 2007Google Scholar
24Duan, G., Lind, M.L., De Blauwe, K., Wiest, A.Johnson, W.L.: Thermal and elastic properties of Cu–Zr–Be bulk metallic glass forming alloys. Appl. Phys. Lett. 90, 211901 2007Google Scholar
25Johnson, W.L.Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 2005CrossRefGoogle Scholar
26Arias, D.Abriata, J.P.: Cu–Zr in Binary Alloy Phase Diagrams, edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak ASM International Materials Park, OH 1990 1511Google Scholar
27Louzguine-Luzgin, D.V., Setyawan, A.D., Kato, H.Inoue, A.: Influence of thermal conductivity on the glass-forming ability of Ni-based and Cu-based alloys. Appl. Phys. Lett. 88, 251902 2006Google Scholar
28Boettinger, W.J.: Growth kinetic limitations during rapid solidification in Rapidly Solidified Amorphous and Crystalline Alloys edited by B.H. Kear, B.C. Giessen, and M. Cohen Elsevier Science Publishing North Holland, New York 1982 15Google Scholar
29Li, Y.: Bulk metallic glasses: Eutectic coupled zone and amorphous formation. JOM 57, 60 2005CrossRefGoogle Scholar
30Xia, J.H., Qiang, J.B., Wang, Y.M., Wang, Q.Dong, C.: Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron. Appl. Phys. Lett. 88, 101907 2006Google Scholar