Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T16:18:36.107Z Has data issue: false hasContentIssue false

Current characterization and growth mechanism of anodic titania nanotube arrays

Published online by Cambridge University Press:  17 January 2011

Chunbin Cao
Affiliation:
School of Sciences, Anhui Agricultural University, Hefei 230036, China; School of Physics and Material Science, Anhui University, Hefei 230039, China; and Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, Hefei 230036, China
Junlei Li
Affiliation:
School of Physics and Material Science, Anhui University, Hefei 230039, China
Xian Wang
Affiliation:
School of Physics and Material Science, Anhui University, Hefei 230039, China
Xueping Song
Affiliation:
School of Physics and Material Science, Anhui University, Hefei 230039, China
Zhaoqi Sun*
Affiliation:
School of Physics and Material Science, Anhui University, Hefei 230039, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

TiO2 nanotube arrays were synthesized by anodic oxidation on a pure titanium substrate in solutions containing 0.175 M NH4F composed of mixtures with different volumetric ratios of DI water and glycerol. According to the results of the current curve recorded during anodization, the time of the first sharp current slope (corresponding to the initial oxide layer formation time) was found to vary from 8 to 171 s depending not only upon the water content in the electrolytes but also upon the voltage. The current curves exhibit oscillation with different amplitudes and periods. In combination with the scanning electron microscope (SEM) images, a growth mechanism, layer-by-layer model, of TiO2 nanotube arrays was presented. Based on this mechanism, many phenomena that appeared during anodization can be reasonably explained. Our results would be helpful for the design of nanoarchitectures in related material systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gong, D., Grimes, C.A., Varghese, O.K., Chen, Z., Hu, W.C., and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).Google Scholar
2.Adachi, M., Murata, Y., Harada, M., and Yoshikawa, S.: Formation of titania nanotubes with high photo-catalytic activity. Chem. Lett. 8, 942 (2000).Google Scholar
3.Albu, S.P., Ghicov, A., Macak, J.M., Hahn, R., and Schmuki, P.: Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 7, 1286 (2007).Google Scholar
4.Chu, S.Z., Inoue, S., Wada, K., Li, D., Haneda, H., and Awatsu, S.: Highly porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol-gel process. J. Phys. Chem. B 107, 6586 (2003).Google Scholar
5.Lai, Y.K., Sun, L., Chen, Y.C., Zhuang, H.F., Lin, C.J., and Chin, J.W.: Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 153, D123 (2006).Google Scholar
6.Macak, J.M., Zlamal, M., Krysa, J., and Schmuki, P.: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3, 300 (2007).CrossRefGoogle ScholarPubMed
7.Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V., and Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).Google Scholar
8.Paulose, M., Varghese, O.K., Mor, G.K., Grimes, C.A., and Ong, K.G.: Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17, 398 (2006).Google Scholar
9.Varghese, O.K., Gong, D.W., Paulose, M., Ong, K.G., Dickey, E.C., and Grimes, C.A.: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 (2003).Google Scholar
10.Varghese, O.K., Mor, G.K., Grimes, C.A., Paulose, M., and Mukherjee, N.: A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. J. Nanosci. Nanotechnol. 4, 733 (2004).Google Scholar
11.Varghese, O.K., Paulose, M., Shankar, K., Mor, G.K., and Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5, 1158 (2005).CrossRefGoogle ScholarPubMed
12.Varghese, O.K., Yang, X.P., Kendig, J., Paulose, M., Zeng, K.F., Palmer, C., Ong, K.G., and Grimes, C.A.: A transcutaneous hydrogen sensor: From design to application. Sens. Lett. 4, 120 (2006).Google Scholar
13.de Tacconi, N.R., Chenthamarakshan, C.R., Yogeeswaran, G., Watcharenwong, A., de Zoysa, R.S., Basit, N.A., and Rajeshwar, K.: Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: Influence of process variables on morphology and photoelectrochemical response. J. Phys. Chem. B 110, 25347 (2006).CrossRefGoogle ScholarPubMed
14.Mohapatra, S.K., Misra, M., Mahajan, V.K., and Raja, K.S.: Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO(2-)xC(x) nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J. Phys. Chem. C 111, 8677 (2007).Google Scholar
15.Xie, Y.B., Zhou, L.M., and Huang, H.T.: Enhanced photoelectrochemical current response of titania nanotube array. Mater. Lett. 60, 3558 (2006).Google Scholar
16.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl. Phys. Lett. 91, 152111 (2007).Google Scholar
17.Shankar, K., Mor, G.K., Prakasam, H.E., Varghese, O.K., and Grimes, C.A.: Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 23, 12445 (2007).Google Scholar
18.Yu, B.Y., Tsai, A., Tsai, S.P., Wong, K.T., Yang, Y., Chu, C.W., and Shyue, J.J.: Efficient inverted solar cells using TiO2 nanotube arrays. Nanotechnology 19, 255202 (2008).Google Scholar
19.Adachi, M., Murata, Y., Okada, I., and Yoshikawa, S.: Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488 (2003).Google Scholar
20.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).Google Scholar
21.Paulose, M., Shankar, K., Varghese, O.K., Mor, G.K., Hardin, B., and Grimes, C.A.: Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology 17, 1446 (2006).Google Scholar
22.Uchida, S., Chiba, R., Tomiha, M., Masaki, N., and Shirai, M.: Application of titania nanotubes to a dye-sensitized solar cell. Electrochemistry 70, 418 (2002).Google Scholar
23.Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K., and Grimes, C.A.: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007).Google Scholar
24.Shankar, K., Bandara, J., Paulose, M., Wietasch, H., Varghese, O.K., Mor, G.K., LaTempa, T.J., Thelakkat, M., and Grimes, C.A.: Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye. Nano Lett. 8, 1654 (2008).Google Scholar
25.Zhu, K., Neale, N.R., Miedaner, A., and Frank, A.J.: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).Google Scholar
26.Park, J., Bauer, S., von der Mark, K., and Schmuki, P.: Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 7, 1686 (2007).Google Scholar
27.Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A., and Desai, T.A.: Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880 (2007).Google Scholar
28.Popat, K.C., Eltgroth, M., La Tempa, T.J., Grimes, C.A., and Desai, T.A.: Titania nanotubes: A novel platform for drug-eluting coatings for medical implants? Small 3, 1878 (2007).Google Scholar
29.Roy, S.C., Paulose, M., and Grimes, C.A.: The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. Biomaterials 28, 4667 (2007).Google Scholar
30.Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N., and Grimes, C.A.: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 (2003).Google Scholar
31.Kang, S.H., Kim, J.Y., Kim, H.S., and Sung, Y.E.: Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate. J. Ind. Eng. Chem. 14, 52 (2008).Google Scholar
32.Zhao, J.L., Wang, X.H., Chen, R.Z., and Li, L.T.: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 134, 705 (2005).CrossRefGoogle Scholar
33.Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 (2007).Google Scholar
34.Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).Google Scholar
35.Tao, J.L., Zhao, J.L., Tang, C.C., Kang, Y.R., and Li, Y.X.: Mechanism study of self-organized TiO2 nanotube arrays by anodization. N. J. Chem. 32, 2164 (2008).Google Scholar
36.Beranek, R., Hildebrand, H., and Schmuki, P.: Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem. Solid-State Lett. 6, B12 (2003).Google Scholar
37.Jaroenworaluck, A., Regonini, D., Bowen, C.R., and Stevens, R.: Nucleation and early growth of anodized TiO2 film. J. Mater. Res. 23, 2116 (2008).Google Scholar
38.Parkhutik, V.: Silicon anodic oxides grown in the oscillatory anodisation regime—Kinetics of growth, composition and electrical properties. Solid-State Electron. 45, 1451 (2001).Google Scholar
39.Abdesselem, S., Aida, M.S., Attaf, N., and Ouahab, A.: Growth mechanism of sputtered amorphous silicon thin films. Physica B 373, 33 (2006).CrossRefGoogle Scholar