Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:13:12.429Z Has data issue: false hasContentIssue false

Curie temperature controlled self-healing magnet–polymer composites

Published online by Cambridge University Press:  24 March 2015

Anansa S. Ahmed
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
Raju V. Ramanujan*
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Many self-healing polymers require elevated temperatures for healing. Curie temperature (TC) controlled magnetic nanoparticles can generate heat through the application of an external alternating magnetic field (AMF). Thus, heating can be localized and regulated, preventing damage to the polymer due to high temperatures. In this work, novel TC controlled magnetic nanoparticle filler–polymer matrix composites (Magpol) were investigated as wire insulation materials. Mn–Zn ferrites were introduced as the filler in a thermoplastic polyethylene vinyl acetate (EVA) matrix. The composite was subjected to different damage modes, such as chaffing and tear. Greater healing efficiency was obtained at lower filler loading compared to other relevant systems. Efficient healing was obtained without any thermal degradation. Good agreement was observed between experimental results and theoretical models of polymer healing. Thus, a Curie temperature controlled magnetic nanocomposite system was developed with improved self-healing capabilities.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blaiszik, B.J., Kramer, S.L.B., Olugebefola, S.C., Moore, J.S., Sottos, N.R., and White, S.R.: Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179 (2010).CrossRefGoogle Scholar
Binder, W.H.: Self-healing Polymers: From Principles to Applications, Vol. 1, 1st ed. (Wiley-VCH Verlag GmbH, Weinheim, 2013); p. 450.CrossRefGoogle Scholar
Sottos, N., White, S., and Bond, I.: Introduction: Self-healing polymers and composites. J. R. Soc., Interface 4, 347 (2007).CrossRefGoogle ScholarPubMed
Nguyen, V.Q., Ahmed, A.S., and Ramanujan, R.V.: Morphing soft magnetic composites. Adv. Mater. 24, 4041 (2012).CrossRefGoogle ScholarPubMed
Zwaag, S.: Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, Vol. 1, 1st ed. (Springer, Delft, 2007); p. 400.CrossRefGoogle Scholar
Palleau, E., Reece, S., Desai, S.C., Smith, M.E., and Dickey, M.D.: Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv. Mater. 25, 1589 (2013).CrossRefGoogle ScholarPubMed
Esser, B., Huston, D., Spencer, G., Burns, D., and Kahn, E.: Active self-healing wire insulation. In Smart Structures and Materials: Industrial and Commercial Applications of Smart Structures Technologies, Vol. 5762, SPIE: San Diego, 2005; p. 8.Google Scholar
Parrish, C.F.: Self-healing wire insulation. Pat. No. US20120115971 A1, US Patent and trademark office, 2012.Google Scholar
Evans, D.: Wiring matters; an overview of the aircraft wiring issue. Aviat. Maint. 1, 30 (2006).Google Scholar
Ivanov, V.S., Migunova, I.I., Kalinina, N.A., and Aleksandrov, G.N.: Radiation processing of polymer insulators: A method for improving their properties and performance. Polym. Eng. Sci. 36, 1941 (1996).CrossRefGoogle Scholar
Miller, K.J., Collier, K.N., Soll-Morris, H.B., Swaminathan, R., and McHenry, M.E.: Induction heating of FeCo nanoparticles for rapid rf curing of epoxy composites. J. Appl. Phys. 105, 07E717 (2009).CrossRefGoogle Scholar
Xu, S., Pickel, A.D., Prasitthipayong, A., Habib, A.H., and McHenry, M.E.: Modeling of localized reflow in solder/magnetic nanocomposites for area-array packaging. J. Appl. Phys. 113, 17A305 (2013).CrossRefGoogle Scholar
Xu, S., Prasitthipayong, A., Pickel, A.D., Habib, A.H., and McHenry, M.E.: Mechanical properties of FeCo magnetic particles-based Sn-Ag-Cu solder composites. Appl. Phys. Lett. 102, 251909 (2013).CrossRefGoogle Scholar
Hubbard, J.W., Orange, F., Guinel, M.J.F., Guenthner, A.J., Mabry, J.M., Sahagun, C.M., and Rinaldi, C.: Curing of a bisphenol E based cyanate ester using magnetic nanoparticles as an internal heat source through induction heating. ACS Appl. Mater. Interfaces 5, 11329, (2013).CrossRefGoogle ScholarPubMed
Gragert, M., Schunack, M., and Binder, W.H.: Azide/alkyne-“click”-reactions of encapsulated reagents: Toward self-healing materials. Macromol. Rapid Commun. 32, 419 (2011).CrossRefGoogle ScholarPubMed
Trask, R.S., Williams, G.J., and Bond, I.P.: Bioinspired self-healing of advanced composite structures using hollow glass fibres. J. R. Soc., Interface 4, 363 (2007).CrossRefGoogle ScholarPubMed
Rahmathullah, M.A.M. and Palmese, G.R.: Crack-healing behavior of epoxy–amine thermosets. J. Appl. Polym. Sci. 113(4), 2191 (2009).CrossRefGoogle Scholar
Adzima, B.J., Kloxin, C.J., and Bowman, C.N.: Externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating. Adv. Mater. 22, 2784 (2010).CrossRefGoogle ScholarPubMed
Habault, D., Zhang, H., and Zhao, Y.: Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 42, 7244 (2013).CrossRefGoogle ScholarPubMed
Bergman, S.D. and Wudl, F.: Mendable polymers. J. Mater. Chem. 18, 41 (2008).CrossRefGoogle Scholar
Holten-Andersen, N., Harrington, M.J., Birkedal, H., Lee, B.P., Messersmith, P.B., Lee, K.Y.C., and Waite, J.H.: pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. 108, 2651 (2011).CrossRefGoogle ScholarPubMed
Toncelli, C., De Reus, D.C., Picchioni, F., and Broekhuis, A.A.: Properties of reversible Diels–Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys. 213, 157 (2012).CrossRefGoogle Scholar
Cho, S.H., White, S.R., and Braun, P.V.: Room-temperature polydimethylsiloxane-based self-healing polymers. Chem. Mater. 24, 4209 (2012).CrossRefGoogle Scholar
Yuan, Y.C., Yin, T., Rong, M.Z., and Zhang, M.Q.: Self healing in polymers and polymer composites. concepts, realization and outlook: A review. eXPRESS Polym. Lett. 2, 238 (2008).CrossRefGoogle Scholar
Burattini, S., Colquhoun, H.M., Greenland, B.W., and Hayes, W.: Self-Healing and Mendable Supramolecular Polymers: Supramolecular Chemistry, 1st ed. (John Wiley & Sons, Ltd, Hoboken, NJ, 2012).CrossRefGoogle Scholar
Syrett, J.A., Becer, C.R., and Haddleton, D.M.: Self-healing and self-mendable polymers. Polym. Chem. 1, 978 (2010).CrossRefGoogle Scholar
Toohey, K.S., Sottos, N.R., Lewis, J.A., Moore, J.S., and White, S.R.: Self-healing materials with microvascular networks. Nat. Mater. 6, 581 (2007).CrossRefGoogle ScholarPubMed
Wool, R.P.: Self-healing materials: A review. Soft Matter 4, 400 (2008).CrossRefGoogle ScholarPubMed
Amamoto, Y., Otsuka, H., Takahara, A., and Matyjaszewski, K.: Self-Healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv. Mater. 24, 3975 (2012).CrossRefGoogle ScholarPubMed
Trask, R.S., Williams, H.R., and Bond, I.P.: Self-healing polymer composites: Mimicking nature to enhance performance. Bioinspiration Biomimetics 2, 1 (2007).CrossRefGoogle ScholarPubMed
Yoon, J.A., Kamada, J., Koynov, K., Mohin, J., Nicolaÿ, R., Zhang, Y., Balazs, A.C., Kowalewski, T., and Matyjaszewski, K.: Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45, 142 (2011).CrossRefGoogle Scholar
Wu, D.Y., Meure, S., and Solomon, D.: Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 33, 479 (2008).CrossRefGoogle Scholar
van Gemert, M.L.G., Peeters, J.W., Söntjens, S.H.M., Janssen, H.M., and Bosman, A.W.: Self-healing supramolecular polymers in action. Macromol. Chem. Phys. 213, 234 (2012).CrossRefGoogle Scholar
Kalista, S.J., Ward, T.C., and Oyetunji, Z.: Self-Healing of Poly(Ethylene-co-Methacrylic Acid) Copolymers Following Projectile Puncture. Mech. Adv. Mater. Struct. 14, 391 (2007).CrossRefGoogle Scholar
Zhang, Y., Broekhuis, A.A., and Picchioni, F.: Thermally self-healing polymeric materials: The next step to recycling thermoset polymers? Macromolecules 42, 1906 (2009).CrossRefGoogle Scholar
Jong Se, P., Takahashi, K., Guo, Z., Wang, Y., Bolanos, E., Hamann-Schaffner, C., Murphy, E., Wudl, F., and Hahn, H.T.: Towards development of a self-healing composite using a mendable polymer and resistive heating. J. Compos. Mater. 42, 2869 (2008).CrossRefGoogle Scholar
Murphy, E.B. and Wudl, F.: The world of smart healable materials. Prog. Polym. Sci. 35, 223 (2010).CrossRefGoogle Scholar
White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., and Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794 (2001).CrossRefGoogle ScholarPubMed
Chen, X., Wudl, F., Mal, A.K., Shen, H., and Nutt, S.R.: New thermally remendable highly cross-linked polymeric materials. Macromolecules 36, 1802 (2003).CrossRefGoogle Scholar
Ax, J. and Wenz, G.: Thermoreversible networks by Diels–Alder reaction of cellulose furoates with bismaleimides. Macromol. Chem. Phys. 213, 182 (2012).CrossRefGoogle Scholar
Duenas, T., Andrew, E., Karen, C., Matt, C., Vishnu Baba, S., Fred, W., Erin, B.M., Ajit, M., James, R.A., Aaron, C., and Teng, K.O.: Smart self-healing material systems using inductive and resistive heating. In Smart Coatings III, American Chemical Society Symposium Series, Vol. 1050, 2010; p. 45.Google Scholar
Corten, C.C. and Urban, M.W.: Repairing polymers using oscillating magnetic field. Adv. Mater. 21, 5011 (2009).CrossRefGoogle ScholarPubMed
Duenas, T., Schlitter, J., Lacevic, N., Jha, A., Chai, K., Wudl, F., Westcott-Baker, L., Mal, A., Corder, A., and Ooi, T.K.: Ballistic missile defense system (BMDS) solutions using remendable polymers. In Time Dependent Constitutive Behavior and Fracture/Failure Processes, Proulx, T. ed.; Springer: New York, 2011; pp.15 267.CrossRefGoogle Scholar
Feng, J., Guo, L.Q., Xu, X., Qi, S.Y., and Zhang, M.L.: Hydrothermal synthesis and characterization of Mn1−xZnxFe2O4 nanoparticles. Phys. B 394, 100 (2007).CrossRefGoogle Scholar
Lan, N.T., Tien, T.D., Duong, N.P., and Truong, D.V.: Magnetic properties of Mn1-xZnxFe2O4 ferrite nanoparticles prepared by using co-precipitation. J. Korean Phys. Soc. 52, 1522 (2008).CrossRefGoogle Scholar
Kim, Y.H. and Wool, R.P.: A theory of healing at a polymer-polymer interface. Macromolecules 16, 1115 (1983).CrossRefGoogle Scholar
Varley, R.: Ionomers as Self Healing Polymers in Self Healing Materials, Vol. 100, Zwaag, S. ed.; (Springer, Netherlands, 2008); p. 95.Google Scholar
Rosensweig, R.E.: Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370 (2002).CrossRefGoogle Scholar
Purushotham, S. and Ramanujan, R.V.: Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J. Appl. Phys. 107, 114701 (2010).CrossRefGoogle Scholar
Levine, I., Zvi, R.B., Winkler, M., Schmidt, A.M., and Gottlieb, M.: Magnetically induced heating in elastomeric nanocomposites - Theory and experiment. Macromol. Symp. 291, 278 (2010).CrossRefGoogle Scholar
Bastien, L.J. and Gillespie, J.W.: A non-isothermal healing model for strength and toughness of fusion bonded joints of amorphous thermoplastics. Polym. Eng. Sci. 31, 1720 (1991).CrossRefGoogle Scholar
Sonmez, F.O. and Hahn, H.T.: Analysis of the on-line consolidation process in thermoplastic composite tape placement. J. Thermoplast. Compos. Mater., 10, 543 (1997).CrossRefGoogle Scholar
Yang, F. and Pitchumani, R.: Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules 35, 3213 (2002).CrossRefGoogle Scholar
Zheng, X., Sauer, B.B., Van Alsten, J.G., Schwarz, S.A., Rafailovich, M.H., Sokolov, J., and Rubinstein, M.: Reptation dynamics of a polymer melt near an attractive solid interface. Phys. Rev. Lett. 74, 407 (1995).CrossRefGoogle ScholarPubMed
Kalfus, J. and Jancar, J.: Relaxation processes in PVAc-HA nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 45, 1380, (2007).CrossRefGoogle Scholar
Subbotin, A., Semenov, A., and Doi, M.: Friction in strongly confined polymer melts: Effect of polymer bridges. Phys. Rev. E 56, 623 (1997).CrossRefGoogle Scholar
McNerny, K., Kim, Y., Laughlin, D., and McHenry, M.: Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia. J. Appl. Phys. 107, 09A312 (2010).CrossRefGoogle Scholar
Zhang, M.Q. and Rong, M.Z.: Theoretical consideration and modeling of self-healing polymers. J. Polym. Sci., Part B: Polym. Phys. 50, 229 (2012).CrossRefGoogle Scholar
Tuncer, E., Rondinone, A., Woodward, J., Sauers, I., James, D.R., and Ellis, A.: Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Appl. Phys. A 94, 843 (2009).CrossRefGoogle Scholar
Aphesteguy, J.C. and Jacobo, S.E.: Composite of polyaniline containing iron oxides. Phys. B 354, 224 (2004).CrossRefGoogle Scholar
Supplementary material: File

Supplementary Material

Supplementary information supplied by authors.

Download Supplementary Material(File)
File 607.8 KB