Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T17:25:09.679Z Has data issue: false hasContentIssue false

Crystallography of surface nucleation and epitaxial growth of lithium triniobate on congruent lithium niobate

Published online by Cambridge University Press:  03 March 2011

M.A. McCoy
Affiliation:
BP Research, Cleveland, Ohio 44128
S.A. Dregia
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
W.E. Lee
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield, England
Get access

Abstract

The decomposition of congruent lithium niobate (LN) crystals proceeds by surface nucleation and growth of LiNb3O8 precipitates which exhibit an epitaxial orientation relationship. The same orientation relationship is observed on x-, y-, and z-cut LN substrates. The epitaxy arises from similarities between the two crystal structures and provides for an essentially continuous oxygen-ion framework from parent to product. On y-cut LN, the precipitates have a well-defined habit plane, and the interfacial misfit between the two structures is accommodated by a rectangular grid of misfit dislocations. The density, geometry, and imaging behavior of the misfit dislocations suggest that their Burgers vectors serve to accommodate the disregistry in the oxygen-ion framework. Based on these observations, it is concluded that the mechanism of formation of LiNb3O8 consists of preferential nucleation on the surface and subsequent growth, possibly by counterdiffusion of cations in a closed system where the oxygen-ion framework remains essentially fixed in space.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pendergrass, L. L., J. Appl. Phys. 62, 231 (1987).1CrossRefGoogle Scholar
2Tamir, T., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
3Okada, M. and Takizawa, K., in Proc. Sixth Int. Meet. Ferroelectricity, Jpn. J. Appl. Phys. 24, Kobe, 1985), p. 144.Google Scholar
4Booth, R. C., Thin Solid Films 126, 167 (1985).CrossRefGoogle Scholar
5Ballman, A. A., J. Am. Ceram. Soc. 48, 112 (1965).CrossRefGoogle Scholar
6Nassau, K., Levinstein, H. J., and Loiacano, G. M., J. Phys. Chem. Solids 27, 989 (1966).CrossRefGoogle Scholar
7Gallagher, P. K. and O'Bryan, H. M. Jr., J. Am. Ceram. Soc. 68, 147 (1985).CrossRefGoogle Scholar
8Abrahams, S. C. and Marsh, P., Acta Crystallogr. B 42, 61 (1986).CrossRefGoogle Scholar
9Chang, E. K., Mehta, A., and Smyth, D. M., Advances in Ceramics (The American Ceramic Society, Westerville, OH, 1987), Vol. 23, p. 351.Google Scholar
10Donnerberg, H. J., Tomlinson, S. M., and Catlow, C. R. A., J. Phys. Chem. Solids 52, 201 (1991).CrossRefGoogle Scholar
11Prokhorov, A. M. and Kuz'minov, Yu. S., Physics and Chemistry of Crystalline Lithium Niobate (IOP Publishing, New York, 1990).Google Scholar
12Lerner, P., Legras, C., and Dumas, J. P., J. Cryst. Growth 3, 4, 231 (1968).CrossRefGoogle Scholar
13Scott, B. and Burns, G., J. Am. Ceram. Soc. 55, 225 (1972).CrossRefGoogle Scholar
14Svaasand, L. O., Eriksrud, M., Nakken, G., and Grande, A. P., J. Cryst. Growth 22, 230 (1974).CrossRefGoogle Scholar
15Holman, R. L., Mater. Sci. Res. 11, 343 (1978).Google Scholar
16Abrahams, S. C., Reddy, J. M., and Bernstein, J. L., J. Phys. Chem. Solids 27, 997 (1966).CrossRefGoogle Scholar
17Lundberg, M., Acta Chem. Scand. 25, 3337 (1971).CrossRefGoogle Scholar
18Armenise, M. N., Canali, C., De Sario, M., Camera, A., Mazzoldi, P., and Celotti, G., J. Appl. Phys. 54, 6223 (1983).CrossRefGoogle Scholar
19De Sario, M., Armenise, M. N., Canali, C., Camera, A., Mazzoldi, P., and Celotti, G., J. Appl. Phys. 57, 1482 (1985).CrossRefGoogle Scholar
20Esdaile, R. J., J. Appl. Phys. 58, 1070 (1985).CrossRefGoogle Scholar
21McCoy, M.A., Ph.D. Thesis, The Ohio State University, Columbus, OH (1990).Google Scholar
22McCoy, M.A., Dregia, S. A., and Lee, W. E., J. Mater. Res. 9, XXX (1994).Google Scholar
23Crystal Technologies, Inc., Palo Alto, CA.Google Scholar
24Vesuvius McDanel Co., Beaver Falls, PA.Google Scholar
25Landheer, D., Mitchel, D. F., and Sproule, G. I., J. Vac. Sci. Technol. A 4, 1897 (1986).CrossRefGoogle Scholar
26Lee, W. E., in “Integrated Optical Circuit Engineering IV,” SPIE Proceedings, (SPIE, 1986), Vol. 704, p. 102.Google Scholar
27Bravman, J. C. and Sinclair, R., J. Electron. Microsc. Technique 1, 53 (1984).CrossRefGoogle Scholar
28McCoy, M.A., Dregia, S. A., and Lee, W. E.: Crystallography of surface nucleation and epitaxial growth Boisen, M. B. Jr. and Gibbs, G. V., Mathematical Crystallography (Mineral. Soc. Amer., 1985), Vol. 15.Google Scholar
29Thomas, G. and Goringe, M. J., Transmission Electron Microscopy of Materials (John Wiley, New York, 1979).Google Scholar
30Carruthers, J. R., Kaminow, I. P., and Stulz, L. W., Appl. Opt. 13, 2333 (1970).CrossRefGoogle Scholar
31The nucleation reaction may be represented by (1/4) (Li2O) + (3/4) (Nb2O5) = (1/2) LiNb3O8, where the angled brackets denote components in the LN supersaturated solid solution. The change in volume accompanying this reaction depends on the partial molar volumes of the two components, evaluated for the composition of the supersaturated solid solution. These partial molar volumes were determined from measured variation of density with mole fraction of Li2O in LN solid solutions.12 The molar volume of the reaction product was determined from the crystallographic data. Thus, a decrease in volume by 6% was estimated for nucleation.Google Scholar
32Phillips, D. S., Heuer, A. H., and Mitchell, T. E., Philos. Mag. A 42, 385, 405 (1980).CrossRefGoogle Scholar
33Heuer, A. H. and Mitchell, T. E., in Precipitation Processes in Solids, edited by Aaronson, H.I. and Russel, K.C. (The Metallurgical Society AIME, Warrendale, PA, 1979), p. 222.Google Scholar
34Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin, 1970).CrossRefGoogle Scholar
35Smith, D. A. and Pond, R. C., Int. Met. Rev. 21, 61 (1976).CrossRefGoogle Scholar
36Frank, F. C., in Report of The Symposium on The Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, 1950), p. 150.Google Scholar
37Kronberg, M. L., Acta Metall. 5, 508 (1957).CrossRefGoogle Scholar
38Hockey, B. J., in Fracture Mechanics in Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1983), Vol. 6, p. 637.Google Scholar