Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T19:32:06.422Z Has data issue: false hasContentIssue false

Crystallography and microstructural studies of phase transformations in the Dy2O3 system

Published online by Cambridge University Press:  31 January 2011

Youn Joong Kim
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Waltraud M. Kriven
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

The crystallography, microstructures, and phase transformation mechanisms in dysprosia (Dy2O3) have been studied. The lattice parameters of B and C phases were refined by x-ray diffraction (XRD). The modulated structures and decomposed structures in the CaO-doped samples were characterized by transmission electron spectroscopy (TEM). A new twin was observed in the modulated B phase. Contrary to the previous studies, the B to C transformation was induced by grinding. The A to B transformation was considered to be ferroelastic and the spontaneous strain was calculated. The major driving force for the B (monoclinic) to C (cubic) transformation is suggested to be the release of lattice strains and cation charge repulsions in the B structure, which is analogous to the β (monoclinic) to γ (orthorhombic) transformation in Ca2SiO4. This transformation can be displacive, if some conditions are provided to overcome the bonding energy of the interlayer oxygens in the B structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Foex, M. and Traverse, J. P., Rev. Int. Hautes Temp. Refract. 3, 429 (1966).Google Scholar
2.Coutures, J. P., Sibieude, F., and Foex, M., J. Solid State Chem. 17, 377 (1976).CrossRefGoogle Scholar
3.Kriven, W. M., J. Am. Ceram. Soc. 71, 1021 (1988).CrossRefGoogle Scholar
4.Hoekstra, H. R. and Gingerich, K. A., Science 146, 1163 (1964).CrossRefGoogle Scholar
5.Foex, M., Traverse, J. P., and Coutures, J. P., Compt. Rendus. Acad. Sc. Paris 260, 3670 (1965).Google Scholar
6.Fleming, M. M., Thesis, M.S., University of Illinois at Urbana-Champaign (1988).Google Scholar
7.Lopato, L. M., Ceramurgia Int. 2, 18 (1978).CrossRefGoogle Scholar
8.Kim, Y. J. and Kriven, W. M., Ultramicroscopy 37, 351 (1991).CrossRefGoogle Scholar
9.Kim, Y. J., Nettleship, I., and Kriven, W. M., J. Am. Ceram. Soc. 75, 2407 (1992).CrossRefGoogle Scholar
10.Sudre, O., Thesis, M.S., University of Illinois at Urbana-Champaign (1988).Google Scholar
11.Venkatachari, K. R. and Kriven, W. M., J. Am. Ceram. Soc. 72, 2023 (1989).CrossRefGoogle Scholar
12.Hsu, C. H. and Kriven, W. M., unpublished work.Google Scholar
13.Appleman, D. E. and Evans, H. T. Jr, Job 9214: Indexing and Least-squares Refinement of Powder Diffraction Data (U.S. Geo logical Survey, Computer Contribution 20, U.S. National Technical Information Service, Document PB2–16188, 1973).Google Scholar
14.Hanic, F., Hartmanova, M., Knab, G. G., Urusovskaya, A. A., and Bagdasarov, K. S., Acta Crystallogr. B40, 76 (1984).CrossRefGoogle Scholar
15.Ross, W. A. and Gibby, R. L., J. Am. Ceram. Soc. 57, 46 (1974).CrossRefGoogle Scholar
16.Lopato, L. M., Nigmanov, B. S., Zaitseva, Z. A., and Shevchenko, A. V., Applied Solar Energy 21, 58 (1985).Google Scholar
17.Jero, P. D., Ph.D. Thesis, University of Illinois at Urbana-Champaign (1988).Google Scholar
18.Boulesteix, C., in Handbook on the Physics and Chemistry of the Rare-Earths, Vol. 5, edited by Gshneider, K. A. Jr, and Eyring, L. (North-Holland, Amsterdam, The Netherlands, New York, 1982), pp. 321386.Google Scholar
19.Boulesteix, C., Caro, P. E., Loier, C., and Portier, R., Phys. Status Solidi A11, 771 (1972).CrossRefGoogle Scholar
20.Caro, P. E., J. Less Comm. Metals, 16, 367 (1968).CrossRefGoogle Scholar
21.Caro, P. E., Schiffmacker, G., Boulesteix, C., Loier, C., and Portier, R., in Defects and Transport in Oxides, edited by Seltzer, M. S. and Jaffee, R. I. (Plenum Press, New York, 1974), pp. 519535.CrossRefGoogle Scholar
22.Salem, B., Dorbez, M. R., Yangui, B., and Boulesteix, C., Philos. Mag. A, 50, 621 (1984).Google Scholar
23.Aizu, K., Phys. Rev. B 2, 754 (1970).CrossRefGoogle Scholar
24.Aizu, K., J. Phys. Soc. Jpn. 28, 706 (1970).CrossRefGoogle Scholar
25.Hoekstra, H. R., Inorg. Chem. 5, 754 (1965).CrossRefGoogle Scholar
26.Atou, T., Kusuba, K., Fukuoka, K., Kikuchi, M., and Syono, Y., J. Solid State Chem. 89, 378 (1990).CrossRefGoogle Scholar
27.Bärnighausen, H. and Schiller, G., J. Less-Common Metals 110, 385 (1985).CrossRefGoogle Scholar
28.Yakel, H. L., Acta Crystallogr. B35, 564 (1979).CrossRefGoogle Scholar
29.Shannon, R. D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
30.O'Keeffe, M. and Hyde, B. G., in Structure and Bonding in Crystals V.1, edited by O'Keeffe, M. and Navrotsky, A. (Academic Press, New York, 1981), pp. 227254.Google Scholar
31.Eyring, L., in Handbook on the Physics and Chemistry of the Rare Earths, V.3: Non-Metallic Compounds-I, edited by Gschneidner, K. A. and Eyring, L. (North-Holland Publ. Co., Amsterdam, 1979), pp. 337399.Google Scholar