Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:25:58.145Z Has data issue: false hasContentIssue false

Crystallographic structure of S′ precipitates in Al–Li–Cu–Mg alloys

Published online by Cambridge University Press:  31 January 2011

J. I. Pérez-Landazábal
Affiliation:
Dpto. Física de la Materia Condensada, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
M. L. Nó
Affiliation:
Dpto. Física Aplicada II, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
G. Madariaga
Affiliation:
Dpto. Física de la Materia Condensada, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
J. San Juan
Affiliation:
Dpto. Física de la Materia Condensada, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
Get access

Abstract

The crystallographic structures of some phases present as precipitates in Al–Li–Cu–Mg alloys are not perfectly resolved. In particular, several structural models have been proposed for the S′ phase, and this controversy is not yet resolved. New x-ray powder diffraction measurements have been performed to compare the theoretical powder diffraction patterns associated with each proposed model with the measured spectra obtained from two different kinds of alloys. The structural model of the S′ phase described by Mondolfo [L. F. Mondolfo, Aluminum Alloys Structure and Properties (Butterworths, London, 1976)] agrees with the experimental results and allows us to reject the two other proposed crystallographic models.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Davis, J. R., Aluminum and Aluminum alloys, ASM Speciality Handbook (ASM INTERNATIONAL, Materials Park, OH, 1993).Google Scholar
2.Starke, E. A. Jr, Quist, W. E., New light alloys, Lecture series No. 174 AGARDNATO, 2–1 (1990).Google Scholar
3.Wilson, R. N. and Partridge, P. G., Acta Metall. 13, 1321 (1965).CrossRefGoogle Scholar
4.Radmilovic, V., Thomas, G., Shiflet, G. J., and Starke, E. A. Jr, Scripta Metall. 23, 1141 (1989).CrossRefGoogle Scholar
5.Crooks, R. E. and Starke, E. A. Jr, Metall. Trans. 15A, 1367 (1984).CrossRefGoogle Scholar
6.Khireddine, D., Rahouadj, R., and Clavel, M., Scripta Metall. 22, 167 (1988).CrossRefGoogle Scholar
7.Gregson, P. J. and Flower, H. M., Acta Metall. 33, 527 (1985).CrossRefGoogle Scholar
8.Mondolfo, L. F., Aluminum Alloys Structure and Properties (Butterworths, London, 1976).Google Scholar
9.Cuisiat, F., Duval, P., and Graf, R., Scripta Metall. 18, 1051 (1984).CrossRefGoogle Scholar
10.Yan, J., Chunzhi, L., and Minggao, Y., J. Mater. Sci. Lett. 9, 421 (1990).CrossRefGoogle Scholar
11.Pérez-Landazábal, J. I., Ph.D. Thesis, Univ. País Vasco, Bilbao, Spain (1995).Google Scholar
12.Pérez-Landazábal, J. I., , M. L., Madariaga, G., and Juan, J. San, J. Appl. Crystallogr. (1997, in press).Google Scholar
13.Gomiero, P., Ph.D., Institut National Polytechnique de Grenoble, Grenoble, France (1988).Google Scholar
14.Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (van Nostrand Reinhold International, 1981).Google Scholar
15.Williams, D. B. and Edington, J. W., Metal. Sci. 9, 529 (1975).CrossRefGoogle Scholar
16.Kuriyama, K. and Masaki, N., Acta Crystallogr. B 31, 1793 (1975).CrossRefGoogle Scholar