Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T06:35:28.320Z Has data issue: false hasContentIssue false

Crystallographic phases, phase transitions, and barrier layer formation in (1 − x) [Pb(Fe1/2Nb1/2)O3]−xPbTiO3

Published online by Cambridge University Press:  31 January 2011

Satendra Pal Singh
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India
Akhilesh Kumar Singh
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India
Dhananjai Pandey*
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India
H. Sharma
Affiliation:
University Department of Physics, Veer Kunwar Singh University, Arrah-802 301, India
Om Parkash
Affiliation:
Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi-221 005, India
*
a)Author to whom correspondence should be addressed. e-mail: [email protected]
Get access

Abstract

Powders of (1 − x) Pb(Fe1/2Nb1/2)O3-xPbTiO3 (PFN-PT) with x = 0.00, 0.10, 0.13, 0.15, 0.20, and 0.25 were prepared by the conventional solid-state route. Structure of PFN-PT was tetragonal for x [H33356] 0.10, which indicates that the morphotropic phase boundary (MPB) may be between 0 < x < 0.10. The nature of phase transition in PFN-PT changed from diffuse ferroelectric to relaxor ferroelectric to normal ferroelectric on increasing the PT content. The effect of the PT content and sintering temperature on barrier layer formation in the PFN-PT system was studied using complex impedance spectroscopy. With increasing PT content, the possibility of the barrier layer formation decreased while with increasing sintering temperature, the barrier layer formation was promoted.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shrout, T.R. and Halliyal, A., Am. Ceram. Soc. Bull. 66(4), 704 (1987).Google Scholar
2.Cross, L.E., Ferroelectrics 76, 241 (1987); L.E. Cross, Ferroelectrics 151, 305 (1994).CrossRefGoogle Scholar
3.Smolenskii, G.A, Agranovskaia, A.I., Popov, S.N., and Isupov, V.A., Sov. Phys.: Tech. Phys. 3, 1981 (1958); A.A. Bokov and S.M. Emelyanov, Phys. Status Solidi 164, K109 (1991).Google Scholar
4.Yasuda, N. and Ueda, Y., J. Phys.: Condense. Matter 1, 5179 (1989).Google Scholar
5.Lee, S.B., Lee, K.H., and Kim, H., Jpn. J. Appl. Phys. 41, 5266 (2002).CrossRefGoogle Scholar
6.Pandey, D., Key Engineering Materials (Trans. Tech. Switzerland, 1995) 101–102, 177 (1995).CrossRefGoogle Scholar
7.Ananta, S. and Thomas, N.W., J. Euro. Ceram. Soc. 19, 1873 (1999).CrossRefGoogle Scholar
8.Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971), p. 60.Google Scholar
9.Sakabe, Y., Am. Ceram. Soc. Bull. 66(9), 1338 (1987).Google Scholar
10.Yokosuka, M., Jpn. J. Appl. Phys. 32, 1142 (1993).CrossRefGoogle Scholar
11.Nomura, S. and Doi, K., Jpn. J. Appl. Phys. 9, 716 (1970).CrossRefGoogle Scholar
12.Heywang, W., Solid-State Electron. 3, 51 (1971).CrossRefGoogle Scholar
13.Shrout, T.R., Swartz, S.L., and Haun, M.J., Am. Ceram. Soc. Bull. 63(6), 808 (1984).Google Scholar
14.Yokosuka, M., Jpn. J. Appl. Phys. 38, 5488 (1999).CrossRefGoogle Scholar
15.Ramani, G.V. and Agarwal, D.C., Ferroelectrics 150, 291 (1993).CrossRefGoogle Scholar
16.Sunder, V.V.S.S.S. and Umarji, A.M., Mater. Res. Bull. 30, 427 (1995).CrossRefGoogle Scholar
17.Gao, Y., Xu, H., Wu, Y., He, T., Xu, G., and Luo, H., Jpn. J. Appl. Phys. 40, 4998 (2001).CrossRefGoogle Scholar
18.Hashimoto, T., Ishibashi, K., and Yako, T., J. Sol-Gel Sci. Tech. 9, 211 (1997).Google Scholar
19.Ichinose, N. and Kato, N., Jpn. J. Appl. Phys. 33, 5523 (1994); X. Gao, J. Xue, and J. Wang, J. Am. Ceram. Soc. 85, 565 (2002).Google Scholar
20.Singh, A.P., Mishra, S.K., Pandey, D., Ch.D. Prasad, and Lal, R., J. Mater. Sci. 28, 5050 (1993).CrossRefGoogle Scholar
21.Swartz, S.L. and Shrout, T.R., Mater. Res. Bull. 17, 1245 (1982); C.C. Chiu, C.C. Li, and S.B. Desu, J. Am. Ceram. Soc. 74, 38 (1991).CrossRefGoogle Scholar
22.Mohan, D., Prasad, R., and Banerjee, S., J. Mater. Sci. Lett. 15, 2149 (1996).CrossRefGoogle Scholar
23.Platonov, G.L., Drobyshev, L.A., Tomashpolskii, Y.Y., and Venevtsev, Y.N., Sov. Phys. Crystallogr. 14, 692 (1970); D.N. Astrov, B.I. Al'schin, R.V. Zorin, and L.A. Drobyshev, Sov. Phys. JETP 28, 1123 (1969).Google Scholar
24.Bonny, V., Bonin, M., Sciau, P., Schenk, K.J., and Chapuis, G., Solid State Commun. 102, 347 (1997); N. Lampis, P. Sciau, and A.G. Lehmann, J. Phys.: Condense. Matter 11, 3489 (1999).CrossRefGoogle Scholar
25.Jona, F. and Shirane, G., Ferroelectric Crystals (Pergamon Press, London, 1962), p. 235.Google Scholar
26., Ragini, Ranjan, R., Mishra, S.K., and Pandey, D., J. Appl. Phys. 92, 3266 (2002).CrossRefGoogle Scholar
27.Singh, A.K. and Pandey, D., Phys. Rev. B 67, 064102 (2003).CrossRefGoogle Scholar
28.Berlincourt, D., Sandia Corp. Technical Report (1960) available from U.S. Department of Commerce, Washington, D.C.Google Scholar
29.Zieleniec, K., Wojcik, K., Milata, M., and Kapusta, J., arXiv:Cond. Mat/0209289 (2002).Google Scholar
30.Dwivedi, R.K., Kumar, D., and Parkash, O., J. Phys. D: Appl. Phys. 33, 88 (2000).CrossRefGoogle Scholar