Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T22:36:28.507Z Has data issue: false hasContentIssue false

Crystallization of Bi–Sr–Ca–Cu–O glasses in oxygen

Published online by Cambridge University Press:  31 January 2011

T.G. Holesinger
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, and Department of Materials Science and Engineering, Ames Laboratory and Iowa State University, 214 Wilhelm, Ames, Iowa 50011
D.J. Miller
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, 9700 South Cass Avenue, Illinois 60439
L.S. Chumbley
Affiliation:
Department of Materials Science and Engineering, Ames Laboratory and Iowa State University, 214 Wilhelm, Ames, Iowa 50011
Get access

Abstract

A detailed study of the crystallization process for compositions near Bi2Sr2Ca1Cu2Oy was undertaken using differential thermal analysis (DTA), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD). Glasses prepared by a splat-quench technique were free of secondary phases in most cases. A two-step crystallization process in oxygen was observed in which partial crystallization of the glass occurs initially with the nucleation of “2201” and Cu2O, and is completed with the formation of SrO, CaO, and Bi2Sr3−xCaxOy. No specific thermal event could be associated with the formation of the “2212” phase. Rather, formation occurs via conversion of 2201 into 2212. This was a kinetically limited process at temperatures below 800 °C as other phases were found to evolve in addition to the 2212 phase during extended anneals. In contrast, a nearly full conversion to the 2212 phase occurred after only 1 min of annealing at 800 °C and above. However, changes in resistivity data, secondary phases, and the measured 2212 composition upon extended anneals at 865 °C showed that considerably longer heat treatments were necessary for the sample to reach its equilibrium state.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kang, J. H., Kampwirth, R. T., Gray, K. E., Marsh, S., and Huff, E. A., Phys. Lett. 128, 102 (1988).CrossRefGoogle Scholar
2.Miller, T. A., Sanders, S. C., Ostenson, J. E., Finnemore, D. K., LeBeau, S. E., and Righi, J., Appl. Phys. Lett. 56 (6), 584586 (1990).CrossRefGoogle Scholar
3.Komatsu, T., Sato, R., Hirose, C., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L22932295 (1988).CrossRefGoogle Scholar
4.Michel, C., Hervieu, M., Borel, M. M., Grandin, A., Deslandes, F., Provost, J., and Raveau, B., Z. Phys. B 68, 421 (1987).CrossRefGoogle Scholar
5.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. Lett. 27, L209 (1988).CrossRefGoogle Scholar
6.Hong, B. and Mason, T. O., J. Am. Ceram. Soc. 74, 10451052 (1991).CrossRefGoogle Scholar
7.Majewski, P., Freilinger, B., Hettich, B., Popp, T., and Schulze, K., presented at DGM Meeting, “High Temperature Superconductors Materials Aspects”, May 1990, in Garmisch-Partenkirchen, FRG.Google Scholar
8.Grader, G. S., Gyorgy, E. M., Gallagher, P. K., O'Bryan, H. M., Johnson, D. W., Jr., Sunshine, S., Zahurak, S. M., Jin, S., and Sherwood, R. C., Phys. Rev. B 38, 757760 (1988).CrossRefGoogle Scholar
9.McMillan, P. W., Glass-Ceramics (Academic Press, New York, 1964).Google Scholar
10.Hinks, D. G., Soderholm, L., Capone, D. W., II, Dabrowski, B., Mitchell, A. W., and Shi, D., Appl. Phys. Lett. 53, 423425 (1988).CrossRefGoogle Scholar
11.Nassau, K., Miller, A. E., Gyorgy, E. M., and Siegrist, T., J. Mater. Res. 4, 13301338 (1989).CrossRefGoogle Scholar
12.Komatsu, T., Sato, R., Hirose, C., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L22932295 (1988).CrossRefGoogle Scholar
13.DeGuire, M. R., Bansal, N. P., and Kim, C. J., J. Am. Ceram. Soc. 73, 11651171 (1990).CrossRefGoogle Scholar
14.Komatsu, T., Sato, R., Imai, K., Matusita, K., and Yamashita, T., Jpn. J. Appl. Phys. 27, L550552 (1988).CrossRefGoogle Scholar
15.Yoshimura, M., Sung, T. H., Nakagawa, Z., and Nakamura, T., Jpn. J. Appl. Phys. 27, L18771879 (1988).CrossRefGoogle Scholar
16.Takei, H., Koike, M., Takeya, H., Suzuki, K., and Ichihara, M., Jpn. J. Appl. Phys. 28, L11931196 (1989).CrossRefGoogle Scholar
17.Ibara, Y., Nasu, H., Imura, T., and Osaka, Y., Jpn. J. Appl. Phys. 28, L3740 (1989).CrossRefGoogle Scholar
18.DeGuire, M. R., Bansal, N. P., and Kim, C. J., J. Am. Ceram. Soc. 73, 11651171 (1990).CrossRefGoogle Scholar
19.Roth, R. S., Rawn, C. J., Burton, B. P., and Beech, F., J. Res. NIST 95, 300336 (1990).CrossRefGoogle Scholar
20.Holesinger, T. G., Miller, D. J., and Chumbley, L. S., presented at spring meeting of TMS, New Orleans, LA (1991).Google Scholar
21.Sunshine, S. A., Siegrist, T., Schneemeyer, L. F., Murphy, D. W., Cava, R. J., Batlogg, B., van Dover, R. B., Fleming, R. M., Glarum, S. H., Nakahara, S., Farrow, R., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W., Jr., and Peck, W. F., Phys. Rev. B 38, 893896 (1988).CrossRefGoogle Scholar
22.Siegrist, T., Schneemeyer, L. F., Sunshine, S. A., Waszczak, J. V., and Roth, R. S., Mater. Res. Bull. XXIII, 14291438 (1988).CrossRefGoogle Scholar
23.Roth, R. S., Rawn, C. J., Ritter, J. J., and Burton, B. P., J. Am. Ceram. Soc. 72, 15451549 (1989).CrossRefGoogle Scholar
24.Rawson, H., Inorganic Glass-Forming Systems (Academic Press, New York, 1967), p. 206.Google Scholar
25.Bormann, R. and Nolting, J., Physica C 162164, 81 (1989).Google Scholar
26.Polonka, J., Xu, M., Goldman, A. I., Finnemore, D. K., and Li, Q., submitted J. Appl. Physics (1991).Google Scholar
27.Kramer, M. J., Iowa State University, private communication.Google Scholar