Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T07:26:12.092Z Has data issue: false hasContentIssue false

Crystallization Mechanisms of some Se100–xTex Glassy Alloys

Published online by Cambridge University Press:  31 January 2011

Y. Calventus
Affiliation:
ETSEIT, UPC, 08222 Terrassa, Spain
S. Suriñach
Affiliation:
Departament de Física, UAB, 08193 Bellaterra, Spain
M. D. Baró*
Affiliation:
Departament de Física, UAB, 08193 Bellaterra, Spain
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The coupling of calorimetric and microscopic techniques shows that the whole crystallization process for some Se100–x Tex (x = 10, 15) glassy alloys proceeds by two different mechanisms, which we call surface and bulk. These mechanisms are activated differently depending on the particular heating rate used and on the temperature of the isothermal heat treatment chosen. The nucleation frequencies and growth rates were determined from reflection polarized optical microscopy analysis, and a good agreement is found between these experimental results and predictions done by the classical nucleation and the normal growth theories. The apparent activation energy from the whole crystallization process which is obtained via differential scanning calorimetry is higher for Se85Te15 than for Se90Te10, and the relation with these values and those obtained from activation energies of nucleation and growth is established. A detailed discussion about the meaning of the different Avrami indexes found is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kolomiets, B. T., Thin Solid Films 34, 1 (1976).CrossRefGoogle Scholar
2.Katsuyama, T., Satoh, S., and Matsumura, H., J. Appl. Phys. 71, 4132 (1992).CrossRefGoogle Scholar
3.Kamaruizaman, B. M. Z., Juhasz, C., and Vaezi-Nejad, S. M., J. Mater. Sci. 27, 4316 (1992).CrossRefGoogle Scholar
4.Savage, J. A., Webber, P. J., and Pitt, A. M., Infrared Phys. 20, 313 (1980).CrossRefGoogle Scholar
5.Venugopal, K. and Bhatnagar, A. K., J. Phys. D: Appl. Phys. 25, 1810 (1992).Google Scholar
6.Mehra, R. M., Kaur, G., Pundir, A., and Mathur, P. C., Jpn. J. Appl. Phys. 32, 128 (1993).CrossRefGoogle Scholar
7.Wang, Z., Tu, C., Li, Y., and Chen, Q., J. Non-Cryst. Solids 191, 132 (1995).CrossRefGoogle Scholar
8.Baró, M. D., Suriñach, S., Malagelada, J., Clavaguera-Mora, M. T., Gialanella, S., and Cahn, R. W., Acta Mater. Metall. 41, 1065 (1993).CrossRefGoogle Scholar
9.Calventus, Y., Ph. D. Thesis, U.A.B. (1994).Google Scholar
10.Thurn, H. and Ruska, J., J. Non-Cryst. Solids 22, 331 (1976).CrossRefGoogle Scholar
11.Kotkata, M. F., Mahmoud, E. A., and El-Mously, Acta Phys. Acad. Sci. Hungaricae 50, 61 (1981).CrossRefGoogle Scholar
12.Baró, M. D., Suriñach, S., Clavaguera-Mora, M. T., Calventus, Y., Rysava, N., and Clavaguera, N., Bol. Soc. Esp. Ceram. Vid. 31C, 273 (1992).Google Scholar
13.Das, G. C., Bever, M. B., and Uhlmann, D. R., J. Non-Cryst. Solids 7, 251 (1972).CrossRefGoogle Scholar
14.Mahadevan, S., Giridhar, A., and Singh, A. K., J. Non-Cryst. Solids 88, 11 (1986).CrossRefGoogle Scholar
15.Lasocka, M., Mater. Sci. Eng. 23, 173 (1976).CrossRefGoogle Scholar
16.Kissinger, H. E., Anal. Chem. 29, 1702 (1957).CrossRefGoogle Scholar
17.Moynihan, C. T., Easteal, A. J., Wilder, J., and Tucker, J., J. Phys. Chem. 78, 2673 (1974).CrossRefGoogle Scholar
18.Matsuishi, K., Kasamura, H., Onari, S., and Ari, T., J. Non-Cryst. Solids 114, 46 (1989).CrossRefGoogle Scholar
19.Suriñach, S., Baró, M. D., Clavaguera-Mora, M. T., and Clavaguera, N., J. Non-Cryst. Solids 58, 209 (1983).CrossRefGoogle Scholar
20.Calventus, Y., Suriñach, S., and Baró, M. D., J. Phys.: Condens. Matter. 8, 927 (1996).Google Scholar
21.Ranganathan, S. and von Heimendahl, M., J. Mater. Sci. 16, 2401 (1981).CrossRefGoogle Scholar
22.Christian, J. W., The Theory of Transformation in Metals and Alloys (Pergamon Press, New York, 1965), p. 399.Google Scholar
23.Rialland, J. F. and Perron, J. C., Proc. 7th Conf. on Amorphous and Liquid Semiconductors (1976), p. 371.Google Scholar
24.Thompson, C. V. and Spaepen, F., Acta Metall. 27, 1855 (1979).CrossRefGoogle Scholar
25.Eustathopoulos, N., Int. Met. Rev. 28, 189 (1983).CrossRefGoogle Scholar
26.Turnbull, D. and Cech, R. E., J. Appl. Phys. 21, 804 (1950).CrossRefGoogle Scholar
27.Chen, H. S., J. Non-Cryst. Solids 27, 257 (1978).CrossRefGoogle Scholar
28.Scherer, G. W., J. Am. Ceram. Soc. 67, 504 (1984).CrossRefGoogle Scholar
29.Moynihan, C. T., J. Am. Ceram. Soc. 76, 1081 (1993).CrossRefGoogle Scholar
30.Yinnon, H. and Uhlmann, D. R., J. Non-Cryst. Solids 54, 253 (1983).CrossRefGoogle Scholar
31.Zanotto, E. D., J. Non-Cryst. Solids 129, 183 (1991).CrossRefGoogle Scholar
32.Germain, P., Zellama, K., Squelard, S., and Bourgoin, J. C., J. Appl. Phys. 50, 6986 (1979).CrossRefGoogle Scholar