Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T03:14:37.790Z Has data issue: false hasContentIssue false

Crystallization and high-temperature structural stability of titanium oxide nanotube arrays

Published online by Cambridge University Press:  31 January 2011

Oomman K. Varghese
Affiliation:
Department of Materials Science & Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Dawei Gong
Affiliation:
Department of Electrical Engineering & Materials Research Institute, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Maggie Paulose
Affiliation:
Department of Electrical Engineering & Materials Research Institute, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes
Affiliation:
Department of Electrical Engineering & Materials Research Institute, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Elizabeth C. Dickey*
Affiliation:
Department of Materials Science & Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The stability of titanium oxide nanotube arrays at elevated temperatures was studied in dry oxygen as well as dry and humid argon environments. The tubes crystallized in the anatase phase at a temperature of about 280 °C irrespective of the ambient. Anatase crystallites formed inside the tube walls and transformed completely to rutile at about 620 °C in dry environments and 570 °C in humid argon. No discernible changes in the dimensions of the tubes were found when the heat treatment was performed in oxygen. However, variations of 10% and 20% in average inner diameter and wall thickness, respectively, were observed when annealing in a dry argon atmosphere at 580 °C for 3 h. Pore shrinkage was even more pronounced in humid argon environments. In all cases the nanotube architecture was found to be stable up to approximately 580 °C, above which oxidation and grain growth in the titanium support disrupted the overlying nanotube array.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grosso, D. and Illia, G.J. de A.A.S., Adv. Mater. 13, 1085 (2001).3.0.CO;2-Q>CrossRefGoogle Scholar
2.Yang, P., Zhao, D., Margolese, D.I., Chmelka, B.F., and Stucky, G.D., Science. 396, 152 (1998).Google Scholar
3.Antonelli, D.M., Microporous Mesoporous Mater. 30, 315 (1999).CrossRefGoogle Scholar
4.Mozalev, A., Magaino, S., and Imai, H., Electrochim. Acta 46, 2825 (2001).CrossRefGoogle Scholar
5.Deng, W., Bodart, P., Pruski, M., and Shanks, B.H., Microporous Mesoporous Mater. 52, 169 (2002).CrossRefGoogle Scholar
6.Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Grimes, C.A., and Dickey, E.C., J. Mater. Res. 17, 1162 (2002).CrossRefGoogle Scholar
7.Parvulescu, V.I., Bonnemann, H., Parvulescu, V., Endruschat, U., Rufinska, A., Lehmann, Ch.W., Tesche, B., and Poncelet, G., Appl. Catal., A 214, 273 (2001).CrossRefGoogle Scholar
8.Wong, M.S., Antonelli, D.M., and Ying, J.Y., Nanostruct. Mater. 9, 165 (1997).CrossRefGoogle Scholar
9.Fujii, T., Yano, T., Nakamura, K., and Miyawaki, O., J. Membr. Sci. 187, 171 (2001).CrossRefGoogle Scholar
10.Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Science 279, 548 (1998).CrossRefGoogle Scholar
11.Harada, M. and Adachi, M., Adv. Mater. 12, 839 (2000).3.0.CO;2-9>CrossRefGoogle Scholar
12.Zou, J., Pu, L., Bao, X., and Feng, D., Appl. Phys. Lett. 80, 1079 (2002).CrossRefGoogle Scholar
13.Pu, L., Bao, X., Zou, J., and Feng, D., Angew. Chem. 113, 1538 (2001).3.0.CO;2-1>CrossRefGoogle Scholar
14.Rao, C.N.R., Satishkumar, B.C., and Govindaraj, A., Chem. Commun. 16, 1582 (1997).Google Scholar
15.Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C., J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
16.Michailowski, A., Aimaawlawi, D., Cheng, G., and Moskovits, M., Chem. Phys. Lett. 349, 1 (2001).CrossRefGoogle Scholar
17.Hoyer, P., Langmuir 12, 1411 (1996).CrossRefGoogle Scholar
18.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
19.Zhang, Q., Gao, L., Sun, J., and Zheng, S., Chem. Lett. 2, 226 (2002).CrossRefGoogle Scholar
20.Adachi, M., Murata, Y., Harada, M., and Yoshikawa, S., Chem. Lett. 8, 942 (2000).CrossRefGoogle Scholar
21.Zhu, Y., Li, H., Koltypin, Y., Hacohen, Y.R., and Gedanken, A., Chem. Commun. 24, 2616 (2001).CrossRefGoogle Scholar
22.Imai, H., Takei, Y., Shimizu, K., Matsuda, M., and Hirashima, H., J. Mater. Chem. 9, 2971 (1999).CrossRefGoogle Scholar
23.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Adv. Mater. 11, 1307 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
24.Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L-M., Appl. Phys. Lett. 79, 3702 (2001).CrossRefGoogle Scholar
25.Fan, Q., McQuillin, B., Bradley, D.D.C., Whitelegg, S., Seddon, A.B., Chem. Phys. Lett. 347, 325 (2001).CrossRefGoogle Scholar
26.Park, N-G., Lagemaat, J. van de, and Frank, A.J., J. Phys. Chem. B 104, 8989 (2000).CrossRefGoogle Scholar
27.On, D.T., Desplantier-Giscard, D., Danumah, C., Kaliaguine, S., Appl. Catal., A 222, 299 (2001).Google Scholar
28.Ma, Z., Yue, Y., Deng, X., and Gao, Z., J. Mol. Catal., A 178, 97 (2002).CrossRefGoogle Scholar
29.Ye, X-S., Xiao, Z-G., Lin, D-S., Huang, S-Y., and Man, Y-H., Mater. Sci. and Eng., B 74, 133 (2000).CrossRefGoogle Scholar
30.Gao, L., Li, Q., Song, Z., and Wang, J., Sens. Actuators, B 71, 179 (2000).CrossRefGoogle Scholar
31.Rothschile, A., Edelman, F., Komem, Y., and Cosandey, F., Sens. Actuators, B 67, 282 (2000).CrossRefGoogle Scholar
32.Kingery, W.D., Bowen, H.K., and Uhlmann, D.R., Introduction to Ceramics (Wiley-Interscience, New York, 1976).Google Scholar
33.Kumar, K-N.P., Keizer, K., Burggraaf, A.J., Okubo, T., and Nagamoto, H., J. Mater. Chem. 3, 1151 (1993).CrossRefGoogle Scholar
34.Ohya, Y., Saiki, H., Tanaka, T., and Takahashi, Y., J. Am. Ceram. Soc. 79, 825 (1996).CrossRefGoogle Scholar
35. K-N.P. Kumar, Engell, J., Kumar, J., Keizer, K., Okubo, T., and Sadakata, M., J. Mater. Sci. Lett. 14, 1784 (1995).Google Scholar
36.Varela, J.A., Whittemore, O.J., and Longo, E., Ceram. Int. 16, 177 (1990).CrossRefGoogle Scholar
37.Whittemore, O.J. and Sipe, J.J., Powder Technol. 9, 159 (1974).CrossRefGoogle Scholar
38.Kumar, K-N.P., Keizer, K., Burggraaf, A.J., Okubo, T., Nagamoto, H., and Morooka, S., Nature 358, 48 (1992).CrossRefGoogle Scholar
39.Kumar, K-N.P., Keizer, K., and Burggraaf, A.J., J. Mater. Chem. 3, 1141 (1993).CrossRefGoogle Scholar
40.Ding, X-Z. and Liu, X-H., J. Mater. Sci. Lett. 15, 1392 (1996).CrossRefGoogle Scholar
41.MacKenzie, K.J.D., Trans. J. Br. Ceram. Soc. 74, 29 (1975).Google Scholar
42.Gennari, F.C. and Pasquevich, D.M., J. Mater. Sci. 33, 1571 (1998).CrossRefGoogle Scholar
43.Iida, Y. and Ozaki, S., J. Am. Ceram. Soc. 44, 120 (1961).CrossRefGoogle Scholar
44.Kumar, K-N.P., Keizer, K., Burggraaf, A.J., Okuba, T., and Nagamoto, H., J. Mater. Chem. 3, 923 (1993).CrossRefGoogle Scholar
45.Zhang, H. and Banfield, J.F., J. Phys. Chem. B 104, 3481 (2000).CrossRefGoogle Scholar
46.Shunli, Z., Jingfang, Z., Zhijun, Z., and Zuliang, D., Chin. Sci. Bull. 45, 1533 (2000).Google Scholar
47.Shannon, R.D., J. Appl. Phys. 35, 3414 (1965).CrossRefGoogle Scholar
48.Gruy, F. and Pijolat, M., J. Am. Ceram. Soc. 75, 657 (1992).CrossRefGoogle Scholar
49.Hebrard, J-L., Nortier, P., Pijolat, M., and Saustelle, M., J. Am. Ceram. Soc. 73, 79 (1990).CrossRefGoogle Scholar
50.Imai, H., Morimoto, H., Tominaga, A., and Hirashima, H., J. Sol-Gel Sci. Technol. 10, 45 (1997).CrossRefGoogle Scholar
51.Klug, H.P. and Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley-Interscience, New York, 1974).Google Scholar
52.Bansal, N.P., Doremus, R.H., Bruce, A.J., and Moynihan, C.T., J. Am. Ceram. Soc. 66 (1983) 233.CrossRefGoogle Scholar
53.Zhang, H. and Banfield, J.F., J. Mater. Res. 15, 437 (2000).CrossRefGoogle Scholar
54.Kumar, K-N.P., Keizer, K., and Burggraaf, A.J., J. Mater. Chem. 3, 917 (1993).CrossRefGoogle Scholar
55.Kumar, K-N.P., Tranto, J., Nair, B.N., Kumar, J., Høj, J.W., and Engell, J.E., Mater. Res. Bull. 29, 551 (1994).CrossRefGoogle Scholar
56.Vaudreuil, S., Bousmina, M., Kaliaguine, S., and Bonneviot, L., Microporous Mesoporous Mater. 44–45, 249 (2001).CrossRefGoogle Scholar
57.Moulijn, J.A., Diepen, A.E. van, and Kapteijn, F., Appl. Catal., A 212, 3 (2001).CrossRefGoogle Scholar
58.Cismaru, D., Ionescu, N.I., Momirlan, M., and Nita, P., Rev. Roum. Phys. 24, 181 (1979).Google Scholar
59.Cismaru, D. and Momirlan, M., Rev. Roum. Phys. 23, 607 (1978).Google Scholar
60.Varela, J.A. and Whittemore, O.J., Proceedings of the 5th International Round Table Conference on Sintering (Elsevier, Amsterdam, The Netherlands, 1982), pp. 439445.Google Scholar
61.Shannon, R.D. and Pask, J.A., J. Am. Ceram. Soc. 48, 391 (1965).CrossRefGoogle Scholar
62.Gouma, P.I., Dutta, P.K., and Mills, M.J., Nanostruct. Mater. 11, 1231 (1999).CrossRefGoogle Scholar
63.Gouma, P.I. and Mills, M.J., J. Am. Ceram. Soc. 84, 619 (2001).CrossRefGoogle Scholar
64.Zhang, H. and Banfield, J.F., J. Mater. Chem. 8, 2073 (1998).CrossRefGoogle Scholar