Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:51:39.008Z Has data issue: false hasContentIssue false

Crystal structure and compositional analysis of epitaxial (K0.56Na0.44)NbO3 films prepared by hydrothermal method

Published online by Cambridge University Press:  07 March 2016

Takahisa Shiraishi
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Kanagawa, Japan; and Institute for Material Research, Tohoku University, Sendai 980-8577, Miyagi, Japan
Hiro Einishi
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Kanagawa, Japan
Takao Shimizu
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Kanagawa, Japan; and Materials Research Center for Element Strategy (Tokyo Tech MCES), Yokohama 226-8502, Kanagawa, Japan
Hiroshi Funakubo*
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502, Kanagawa, Japan; and Materials Research Center for Element Strategy (Tokyo Tech MCES), Yokohama 226-8502, Kanagawa, Japan
Minoru Kurosawa
Affiliation:
Department of Information Processing, Tokyo Institute of Technology, Yokohama 226-8502, Kanagawa, Japan
Hiroshi Uchida
Affiliation:
Department of Materials and Life Sciences, Sophia University, Chiyoda, 102-8554, Tokyo, Japan
Nobuhiro Kumada
Affiliation:
Center for Crystal Science and Technology, University of Yamanashi, Koufu, 400-8510, Yamanashi, Japan
Takanori Kiguchi
Affiliation:
Institute for Material Research, Tohoku University, Sendai 980-8577, Miyagi, Japan
Toyohiko J. Konno
Affiliation:
Institute for Material Research, Tohoku University, Sendai 980-8577, Miyagi, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

(KxNa1−x)NbO3 films were deposited on Nb-doped (100)SrTiO3 substrates at 240 °C for times between 1 and 6 h by a hydrothermal method. Over this time series, the measured (K + Na)/Nb ratio of the films was found to remain constant, but the bulk K/(K + Na) ratio, x, decreased from an initial value of 0.75–0.56. It was determined that film growth initially proceeded through crystallization of the K-rich phase (K0.75Na0.25)NbO3. For film growth times greater than 3 h, a second perovskite phase with a smaller unit cell volume was detected, with an estimated composition of (K0.36Na0.64)NbO3. As such, the measured bulk composition value x = 0.56 was determined to be the result of a combination of these two phases, as opposed to originating from a single phase. Cross-sectional transmission electron microscopy analyses of films prepared for 6 h revealed that they consist of two layers in the direction normal to the substrate; this bilayer-type structure, only observed for hydrothermal growth of this material, is considered to arise from the large solubility mismatch between the Nb precursor and KOH and NaOH in the growth solution.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Qiu, Y., Lei, J., Yang, D., Yin, B., Zhang, H., Bian, J., Ji, J., Liu, Y., Zhao, Y., Luo, Y., and Hu, L.: Enhanced performance of wearable piezoelectric nanogenerator fabricated by two-step hydrothermal process. Appl. Phys. Lett. 104, 113903 (2014).Google Scholar
Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Taganstev, A.K., Taylor, D.V., Yamada, T., and Streiffer, S.: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).Google Scholar
Eom, C.B. and Trolier-McKinstry, S.: Thin-film piezoelectric MEMS. Mater. Res. Bull. 37, 1007 (2012).Google Scholar
Newns, D.M., Elmegreen, B.G., Liu, X-H., and Martyna, G.J.: High response piezoelectric and piezoresistive materials for fast, low voltage switching: Simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 24, 3672 (2012).Google Scholar
Shrout, T.R. and Zhang, S.J.: Lead-free piezoelectric ceramics: Althernatives for PZT? J. Electroceram. 19, 111 (2007).Google Scholar
Muralt, P.: Recent progress in materials issues for piezoelectric MEMS. J. Am. Ceram. Soc. 91, 1385 (2008).CrossRefGoogle Scholar
Jaffe, B., Roth, R.S., and Marzullo, S.: Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. J. Appl. Phys. 25, 809 (1954).Google Scholar
Leontsev, S.O. and Eitel, R.E.: Progress in engineering high strain lead-free piezoelectric ceramics. Sci. Technol. Adv. Mater. 11, 044302 (2010).Google Scholar
Li, J.F., Eang, K., Zhu, F.Y., Cheng, L.Q., and Yao, F.Z.: (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J. Am. Ceram. Soc. 96, 3677 (2013).Google Scholar
Liu, S.Y., Liu, S., Li, D.J., Shen, Y., Dang, H., Liu, Y., Xue, W., and Wang, S.: Structure, phase transition, and electronic properties of K1−xNaxNbO3 solid solutions from first-principles theory. J. Am. Ceram. Soc. 97, 4019 (2014).CrossRefGoogle Scholar
Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M.: Lead-free piezoceramics. Nature 432, 87 (2004).Google Scholar
Kanno, I., Mino, T., Kuwajima, S., Suzuki, T., Kotera, H., and Wasa, K.: Piezoelectric properties of (K,Na)NbO3 thin films deposited on (001)SrRuO3/Pt/MgO substrates. IEEE Trans. Sonics Ultrason. 38, 256 (1991).Google Scholar
Cho, C.R. and Grishin, A.: Self-assembling ferroelectric Na0.5K0.5NbO3 thin films by pulsed-laser deposition. Appl. Phys. Lett. 75, 268 (1999).Google Scholar
Tanaka, K., Hayashi, H., Kakimoto, K., Ohsato, H., and Iijima, T.: Effect of (Na,K)-excess precursor solution on alkoxy-derived (Na,K)NbO3 powders and thin Films. Jpn. J. Appl. Phys. 46, 6964 (2007).CrossRefGoogle Scholar
Nakashima, Y., Sakamoto, W., Shimura, T., and Yogo, T.: Chemical processing and characterization of ferroelectric (Na,K)NbO3 thin films. Jpn. J. Appl. Phys. 46, 6971 (2007).Google Scholar
Hicks, W.T.: Evaluation of vapor-pressure data for mercury, lithium, sodium, and potassium. J. Chem. Phys. 38, 1873 (1963).Google Scholar
Ishikawa, M., Yazawa, K., Fujisawa, T., Yasui, S., Yamada, T., Hasegawa, T., Morita, T., Kurosawa, M., and Funakubo, H.: Growth of epitaxial KNbO3 thick films by hydrothermal method and their characterization. Jpn. J. Appl. Phys. 47, 3824 (2008).Google Scholar
Handoko, A.D., Goh, G.K.L., and Chew, R.X.: Piezoelectrically active hydrothermal KNbO3 thin films. CrystEngComm 14, 421 (2012).Google Scholar
Goh, G.K.L. and Donthu, S.K.: Hydrothermal epitaxy of I: V perovskite thin films. Mater. Res. Soc. Symp. Proc. 718, 1 (2002).Google Scholar
Cheng, Z., Ozawa, K., Osada, M., Miyazaki, A., and Kimura, H.: Low-temperature synthesis of NaNbO3 nanopowders and their thin films from novel carbon-free precursor. J. Am. Ceram. Soc. 89, 1188 (2006).Google Scholar
Goh, G.K.L., Levi, C.G., Choi, J.H., and Lange, F.F.: Hydrothermal epitaxy of KNbO3 thin films and nanostructures. J. Cryst. Growth 286, 457 (2006).Google Scholar
Handoko, A.D. and Goh, G.K.L.: Hydrothermal synthesis of epitaxial NaxK(1−x)NbO3 solid solution films. Thin Solid Films 519, 5156 (2011).CrossRefGoogle Scholar
Handoko, A.D. and Goh, G.K.L.: Hydrothermal growth of piezoelectrically active lead-free (Na,K)NbO3-LiTaO3 thin films. CrystEngComm 15, 672 (2013).Google Scholar
Shiraishi, T., Einishi, H., Yasui, S., Ishikawa, M., Hasegawa, T., Kurosawa, M., Uchida, H., Sakashita, Y., and Funakubo, H.: Growth of epitaxial {100}-oriented KNbO3–NaNbO3 solid solution films on (100)cSrRuO3//(100)SrTiO3 by hydrothermal method and their characterization. Jpn. J. Appl. Phys. 50, 09ND11 (2011).Google Scholar
Shiraishi, T., Einishi, H., Yasui, S., Ishikawa, M., Hasegawa, T., Kurosawa, M., Uchida, H., Sakashita, Y., and Funakubo, H.: Composition dependency of crystal structure, electrical and piezoelectric properties for hydrothermally-synthesized 3 µm-thickness (KxNa1−x)NbO3 films. J. Ceram. Soc. Jpn. 121, 627 (2013).CrossRefGoogle Scholar
Shiraishi, T., Kaneko, N., Einishi, H., Shimizu, T., Kurosawa, M., Uchida, H., Kobayashi, T., Kiguchi, T., Konno, T. J., and Funakubo, H.: Crystal structure analysis of hydrothermally synthesized epitaxial (KxNa1−x)NbO3 films. Jpn. J. Appl. Phys. 52, 09KA11 (2013).Google Scholar
Sun, C., Xing, X., Chen, J., Deng, J., Li, L., Yu, R., Qiao, L., and Liu, G.: Hydrothermal synthesis of single crystalline (K,Na)NbO3 powders. Eur. J. Inorg. Chem. 2007e 1884 (2007).Google Scholar
Wang, Z., Gu, H., Hu, Y., Yang, K., Hu, M., Zhou, D., and Guan, J.: Synthesis, growth mechanism and optical properties of (K,Na)NbO3 nanostructures. CrystEngComm 12, 3157 (2010).Google Scholar
Baker, D.W., Thomas, P.A., Zhang, N., and Glazer, A.M.: Structural study of KxNa1−xNbO3 (KNN) for compositions in the range x = 0.24−0.36. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 65, 22 (2009).Google Scholar
Ahtee, M. and Glazer, A.M.: Lattice parameters and tilted octahedral in sodium-potassium niobate solid solutions. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 434 (1976).CrossRefGoogle Scholar
Ahtee, M. and Hewat, A.W.: Structure phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 34, 309 (1978).Google Scholar
Fontana, M.D., Metrat, G., Servoin, J.L., and Gervais, F.: Infrared spectroscopy in KNbO3 though the successive ferroelectric phase transitions. J. Phys. C: Solid State Phys. 17, 483 (1984).Google Scholar
Ge, H., Hou, Y., Rao, X., Zhu, M., Wang, H., and Yan, H.: The investigation of depoling mechanism of densified KNbO3 piezoelectric ceramic. Appl. Phys. Lett. 99, 032905 (2011).Google Scholar
Ishizawa, N., Wang, J., Sakakura, T., Inagaki, Y., and Kakimoto, K.: Structural evolution of Na0.5K0.5NbO3 at high temperatures. J. Solid State Chem. 183, 2731 (2010).Google Scholar
Schiemer, J., Withers, R.L., Liu, Y., and Yi, Z.: Ferroelectric and octahedral tilt twin disorder and the lead-free piezoelectric, sodium potassium niobate system. J. Solid State Chem. 195, 55 (2012).CrossRefGoogle Scholar
Baker, D.W., Thomas, P.A., Zhang, N., and Glazer, A.M.: A comprehensive study of the phase diagram of KxNa1−xNbO3. Appl. Phys. Lett. 95, 091903 (2009).CrossRefGoogle Scholar
Su, L., Zhu, K., Qiu, J., and Ji, H.: Isopropanol-assisted hydrothermal synthesis of (K,Na)NbO3 piezoelectric ceramic powders. J. Mater. Sci. 45, 3311 (2010).Google Scholar
Lv, J.H., Zhang, M., Guo, M., Li, W.C., and Wang, X.D.: Hydrothermal synthesis and characterization of KxNa(1−x)NbO3 powders. J. Appl. Sci. Technol. 4, 571 (2007).Google Scholar
Zhang, F., Han, L., Bai, S., Sun, T., Karaki, T., and Adachi, M.: Hydrothermal synthesis of (K,Na)NbO3 particles. Jpn. J. Appl. Phys. 47e, 7685 (2008).CrossRefGoogle Scholar
Handoko, A.D. and Goh, G.K.L.: Hydrothermal synthesis of sodium potassium niobate sold solutions at 200 °C. Green Chem. 12, 680 (2010).Google Scholar
Handoko, A.D. and Goh, G.K.L.: Low temperature formation of (NaxK1−x)NbO3 from hydrothermally synthesized NaNbO3. Mater. Res. Innov. 15, 352 (2011).Google Scholar