Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T04:51:08.775Z Has data issue: false hasContentIssue false

Crystal reorientation and wear mechanisms in MoS2 lubricating thin films investigated by TEM

Published online by Cambridge University Press:  18 February 2016

J. Moser
Affiliation:
Institut de Physique Appliquée, Ecole Polytechnique Fédérate de Lausanne, CH-1015 Lausanne, Switzerland
F. Lévy
Affiliation:
Institut de Physique Appliquée, Ecole Polytechnique Fédérate de Lausanne, CH-1015 Lausanne, Switzerland
Get access

Extract

MoS2 thin films are sputter-deposited in different conditions in order to obtain well-defined microstructures. They are submitted to ball-on-disk wear tests at moderate loads (0.7 GPa). Cross sections of wear tracks are observed by transmission electron microscopy (TEM). Sliding induces the formation and the wear of a lubricating buffer layer between the film and the sliding ball. This buffer layer shows strong crystal reorientation, suggesting the presence of intergranular motion. Initially amorphous films crystallize during the sliding test. The film's intrinsic failure mechanisms appear to be more determinant for the sliding lifetime than the properties of the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hilton, M.R., Bauer, R., Didziulis, S.V., and Fleischauer, P.D., Thin Solid Films 201, 4958 (1991).Google Scholar
2. Fleischauer, P. D. and Bauer, R., ASLE Trans. 30, 160166 (1987).Google Scholar
3. Didziulis, S.V. and Fleischauer, P. D., Langmuir 6, 621627 (1990).Google Scholar
4. Bertrand, P. A., J. Mater. Res. 4, 180184 (1989).Google Scholar
5. Mikkelsen, N. J., Chevallier, J., Sørensen, G., and Straede, C. A., Appl. Phys. Lett. 52, 11301132 (1988).Google Scholar
6. Mikkelsen, N. J. and Sørensen, G., Mater. Sci. Eng. A115, 343347 (1989).Google Scholar
7. Bhattacharya, R. S., Rai, A. K., and Erdemir, A., Nucl. Instrum. Methods in Phys. Res. B59/60, 788792 (1991).Google Scholar
8. Bichsel, R., Buffat, P., and Lévy, F., J. Phys. D: Appl. Phys. 19, 15751585 (1986).Google Scholar
9. Buck, V., Wear 114, 263274 (1987).Google Scholar
10. Gribi, P., Sun, Z.W., and Lévy, F., J. Phys. D: Appl. Phys. 22, 238240 (1989).Google Scholar
11. Aubert, A., Nabot, J. Ph., Ernoult, J., and Renaux, Ph., Surf. Coat. Technol. 41, 127134 (1990).Google Scholar
12. Bolster, R.N., Singer, I.L., Wegand, J.C., Fayeulle, S., and Gossett, C.R., Surf. Coat. Technol. 46, 207215 (1991).Google Scholar
13. Müller, C., Menoud, C., Maillat, M., and Hintermann, H. E., Surf. Coat. Technol. 36, 351359 (1988).Google Scholar
14. Hilton, M. R. and Fleischauer, P.D., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L. E. Fehrenbacher, L., and Winer, W. O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989), pp. 227238.Google Scholar
15. Hilton, M. R., Bauer, R., and Fleischauer, P. D., Thin Solid Films 188, 219236 (1990).Google Scholar
16. Fayeulle, S., Ehni, P. D., and Singer, I. L., Mechanics of Coatings, Leeds-Lyon 16, 129137 (1990).Google Scholar
17. Johnson, K. L., Contact Mechanics (Cambridge University Press, 1985).Google Scholar
18. Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., and Stupp, B.C., Appl. Phys. Lett. 57, 995997 (1990).Google Scholar
19. Moser, J., Liao, H., and Lévy, F., J. Phys. D: Appl. Phys. 23, 624626 (1990).Google Scholar
20. Moser, J. and Lévy, F., J. Mater. Res. 7, 734740 (1992).Google Scholar
21. Poirier, J-P., Creep of Crystals (Cambridge University Press, 1985).Google Scholar