Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T11:23:17.104Z Has data issue: false hasContentIssue false

Crystal growth via spiral motion in abalone shell nacre

Published online by Cambridge University Press:  01 August 2006

Nan Yao*
Affiliation:
Princeton University, Princeton Institute for the Science and Technology of Materials, Princeton, New Jersey 08544
Alexander Epstein
Affiliation:
Princeton University, Princeton Institute for the Science and Technology of Materials, Princeton, New Jersey 08544
Austin Akey
Affiliation:
Princeton University, Princeton Institute for the Science and Technology of Materials, Princeton, New Jersey 08544
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We present a structural feature of nacre in the red abalone shell: micrometer-scale screw dislocations in the aragonite layers and resultant growth via spiral motion. Compared to typical ionic or covalent crystals, nacre contains 106 screw dislocations per square centimeter, a difference of three orders of magnitude. Using electron microscopy, ion microscopy, and an in situ nano-manipulator, we studied the structure of screw dislocation cores in detail. We considered that these screw dislocations contribute significantly to the strengthening mechanisms that lead to nacre's extraordinary work of fracture, which is three orders of magnitude greater than that of aragonite and other monolithic crystals. This work suggests that the lamellar layers of aragonite propagate via a large number of continuous spiral growth domains as the “stacks of coins” become confluent. This model may provide a basis for creating new comparable micro/nanocomposites through synthetic or biomineralization means.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weiner, S., Wagner, H.D.: The material bone: Structure mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 (1998).CrossRefGoogle Scholar
2.Biomimetics, Design and Processing of Materials, edited by Sarikaya, M. and Aksay, I.A. (American Institute of Physics, 1996), p. 35.Google Scholar
3.Mann, S.: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, UK, 2001), p. 6.CrossRefGoogle Scholar
4.Yao, N., Wang, R.Z., Ku, A.Y., Saville, D.A., Aksay, I.A. Nanostructured bio-inspired materials, in Nanophase and Nanostructured Materials, Vol. 2, edited by Wang, Z.L., Liu, Y. and Zhang, Z. (Kluwer-Tsinghua University Press, Beijing, People's Republic of China, 2001), p. 237.Google Scholar
5.Jackson, A.P., Vincent, J.F.V., Turner, R.M.: The mechanical design of nature. Proc. R. Soc. London, B: Biol. Sci. 234, 415 (1988).Google Scholar
6.Currey, J.D.: Mechanical properties of mother of pearl in tension. Proc. R. Soc. London, B: Biol. Sci. 196, 443 (1977).Google Scholar
7.Yao, N., Markiewicz, D.J., Aksay, I.A.: Structural details as clues to understanding nacre formation. Microsc. Microanal. 2 (6 Suppl.), 896 (2000).CrossRefGoogle Scholar
8.Wang, R.Z., Suo, Z.G., Evans, A.G., Yao, N., Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).CrossRefGoogle Scholar
9.Treccani, L., Koshnavaz, S., Blank, S., vonRoden, K., Schulz, U., Weiss, I., Mann, K., Radmacher, M., Fritz, M. Biomineralizing proteins with emphasis on invertebratemineralized structures, in Biopolymers, edited by Fhnestock, and Steinbuchl, (Wiley-VCH-Verlag, Weinheim, Germany 2003), p. 289.Google Scholar
10.Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M., Gruner, S.M.: Biomimetic pathways for assembling inorganic thin films. Science 273, 892 (1996).CrossRefGoogle ScholarPubMed
11.Song, F., Soh, A.K., Bai, Y.L.: Structural and mechanical properties of the organic matrix layers on nacre. Biomaterials 24, 3623 (2003).CrossRefGoogle ScholarPubMed
12.Blank, S., Arnoldi, M., Khoshnavaz, S., Treccani, L., Kuntz, M., Mann, K., Grathwohl, G., Fritz, M.: The nacre protein perlucin nucleates growth of calcium carbonate crystal. J. Microsc. 212, 280 (2003).CrossRefGoogle Scholar
13.Zaremba, C.M., Belcher, A.M., Fritz, M., Li, Y., Mann, S., Hansma, P.K., Morse, D.E., Speck, J.S., Stucky, G.D.: Critical transitions in the biofabrication of abalone shells and flat pearls. Chem. Mater. 8, 679 (1996).CrossRefGoogle Scholar
14.Bevelander, G., Nakahara, H.: An electron microscope study of formation of cacreous layer in shell of certain bivalve molluscs. Calc. Tiss. Res. 3, 84 (1969).CrossRefGoogle ScholarPubMed
15.Nakahara, H.: An electron microscope study of the growing surface or nacre in two gastropod species. Venus 38, 205 (1979).Google Scholar
16.Morse, D.E., Cariolou, M.A., Stucky, G.D., Zaremba, C.M., and Hansma, P.K.: Genetic coding in biomineralization of microlaminate composites, in Biomolecular Materials, edited by Viney, C., Case, S.T., and Waite, J.H. (Mater. Res. Soc. Symp. Proc. 292, Pittsburgh, PA, 1993), p. 59.Google Scholar
17.Schaffer, T.E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D.A., Almqvist, N., Zaremba, C.M., Belcher, A.M., Smith, B.L., Stucky, G.D., Morse, D.E., Hansma, P.K.: Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Mater. 9, 1731 (1997).CrossRefGoogle Scholar
18.Katti, K.S., Katti, D.R., Pradhan, S.M., Bhosle, A.: Platelet interlocks are the key to toughness and strength in nacre. J. Mater. Res. 20, 1097 (2005).CrossRefGoogle Scholar
19.Evans, A.G., Suo, Z.G., Wang, R.Z., Aksay, I.A., He, M.Y., Hutchinson, J.W.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001).CrossRefGoogle Scholar
20.Wyatt, O.H., Dew-Hughes, D. in Metals, Ceramics, and Polymers, (Cambridge Univ. Press, Cambridge, UK, 1974), p. 347.Google Scholar
21.Hayden, W., Moffatt, W.G., Wulff, J. In Structure and Properties of Materials Vol. 3 (John Wiley and Sons, New York, 1965), p. 71.Google Scholar
22.Watabe, N.: The observation of the surface structure of the cultured pearls relating to color and luster. Rep. Fac. Fish. Pref. Univ. Mie. 2, 18 (1955).Google Scholar
23.Wise, S.W., deVilliers, J.: Scanning electron microscopy of molluscan shell ultrastructures: Screw dislocations in pelecypod nacre. Trans. Am. Micro. Soc. 90, 376 (1971).CrossRefGoogle Scholar
24.Askeland, D.R., Phulé, P.P.: The Science and Engineering of Materials, 4th ed. (Brooks/Cole, Pacific Grove, CA, 2003), p. 148.Google Scholar
25.Qi, H.J., Bruet, B.J.F., Palmer, J.S., Ortiz, C., Boyce, M.C. Micromechanics and macromechanics of the tensile deformation of nacre, in Mechanics of Biological Tissues, edited by Holzapfel, G.A. and Ogden, R.W. (Springer-Verlag, Graz, Austria, 2005), p. 175.Google Scholar
26.Bruet, B.J.F., Qi, H.J., Boyce, M.C., Panas, R., Tai, K., Frick, L., Ortiz, C.: Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc trochus niloticus. J. Mater. Res. 20, 2400 (2005).CrossRefGoogle Scholar
27.Sarikaya, M.: An introduction to biomimetics—A structural viewpoint. Microsc. Res. Tech. 27, 360 (1994).CrossRefGoogle Scholar