Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:03:51.549Z Has data issue: false hasContentIssue false

Crystal growth of YBa2Cu4O8 and Y2Ba4Cu7O15 under high oxygen pressure

Published online by Cambridge University Press:  29 June 2016

Takayuki Miyatake
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome, Koto-ku, Tokyo 135, Japan
Tsutomu Takata
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome, Koto-ku, Tokyo 135, Japan
Koji Yamaguhi
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome, Koto-ku, Tokyo 135, Japan
Kenshi Takamuku
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome, Koto-ku, Tokyo 135, Japan
Naoki Koshizuka
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome, Koto-ku, Tokyo 135, Japan
Shoji Tanaka
Affiliation:
Superconductivity Research Laboratory, ISTEC, Shinonome, Koto-ku, Tokyo 135, Japan
Kazuyuki Shibutani
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel, Ltd., Takatsukadai, Nishi-ku, Kobe 651-22, Japan
Seiji Hayashi
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel, Ltd., Takatsukadai, Nishi-ku, Kobe 651-22, Japan
Rikuo Ogawa
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel, Ltd., Takatsukadai, Nishi-ku, Kobe 651-22, Japan
Yoshio Kawate
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel, Ltd., Takatsukadai, Nishi-ku, Kobe 651-22, Japan
Get access

Abstract

We investigate the crystal growth of YBa2Cu4O8 and Y2Ba4Cu7C7O15−σ in Al2O3 crucibles at P(O2) = 20 MPa employing commercial O2-HIP equipment. Large crystals of YBa2Cu4O8 up to 1 × 0.5 × 0.05 mm3 are obtained from starting compositions of about 65–67 mol % CuO. When we use a composition of Y: Ba: Cu = 2:6:15, single crystals of YBa2Cu4O8, free from contamination, are obtained at a growth temperature of 1000°C, and those of the Y2Ba4Cu7O15 phase with Al, having the maximum size of 3 × 1.5 × 0.05 mm3, are obtained at a temperature of 1050°C. YBa2Cu4O8 crystals exhibit a superconducting transition temperature Tc of 75 K. Y2Ba4Cu7O15−σ crystals have a Tc of 20 K because of the contamination of aluminum from the crucible.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schneemeyer, L.F., Waszczak, J.V., Siegrist, T., van Dover, R. B., Rupp, L.W., Batlogg, B., Cava, R.J., and Murphy, D.W., Nature 328, 601 (1987).CrossRefGoogle Scholar
2.Takekawa, S. and Iyi, N., Jpn. J. Appl. Phys. 26, L851 (1987).Google Scholar
3.Takei, H., Takeya, H., Iye, Y., Tamegai, T., and Sakai, F., Jpn. J. Appl. Phys. 26, L1040 (1987).Google Scholar
4.Laudise, R.A., Schneemeyer, L.F., and Menovsky, A.A., J. Cryst. Growth 96, 569 (1989).Google Scholar
5.Kaiser, D.L., Holtzberg, F., Scott, B.A., and McGuire, T.R., Appl. Phys. Lett. 51, 1040 (1987).Google Scholar
6.Menken, M.J.V., Kadowaki, K., and Menovsky, A.A., J. Cryst. Growth 96, 1002 (1989).Google Scholar
7.Wolf, T., Goldacker, W., Obst, B., Roth, G., and Flükiger, R., J. Cryst. Growth 96, 1010 (1989).CrossRefGoogle Scholar
8.Oka, K., Nakane, K., Ito, M., Saito, M., and Unoki, H., Jpn. J. Appl. Phys. 27, L1065 (1988).Google Scholar
9.Oka, K., Saito, M., Ito, M., Nakane, K., Murata, K., Nishihara, Y., and Unoki, H., Jpn. J. Appl. Phys. 28, L219 (1989).CrossRefGoogle Scholar
10.Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336, 660 (1988).Google Scholar
11.Morris, D.E., Nickel, J.H., Wei, J.Y.T., Asmer, N.G., Scott, J.S., Scheven, U.M., Hultgren, C.T., Markelz, A.G., Post, J.E., Heaney, P.J., Veblen, D.R., and Hazen, R.M., Phys. Rev. B 39, 7347 (1989).CrossRefGoogle Scholar
12.Miyatake, T., Yamaguchi, K., Takata, T., Gotoh, S., Koshizuka, N., and Tanaka, S., Physica C 160, 541 (1989).Google Scholar
13.Cava, R.J., Karajewski, J.J., Peck, W.F. Jr., Batlogg, B., Rupp, L.W. Jr., Fleming, R.M., James, A.C.W.P., and Marsh, P., Nature 338, 328 (1989).Google Scholar
14.Jin, S., O'Bryan, H.M., Gallagher, P.K., Tiefel, T.H., Cava, R.J., Fastnacht, R.A., and Kammlott, G.W., Physica C 165, 415 (1990).Google Scholar
15.Murakami, H., Yaegashi, S., Nishino, J., Shiohara, Y., and Tanaka, S., Jpn. J. Appl. Phys. 29, L445 (1990).Google Scholar
16.Karpinski, J., Rusiecki, S., Kaldis, E., Bucher, B., and Jilek, E., Physica C 160, 449 (1989).Google Scholar
17.Morris, D.E., Markelz, A.G., Fayn, B., and Nickel, J.H., Physica C 168, 153 (1990).Google Scholar
18.Wada, T., Suzuki, N., Ichinose, A., Yaegashi, Y., Yamauchi, H., and Tanaka, S., Appl. Phys. Lett. 57, 81 (1990).Google Scholar
19.Bordet, P., Chaillout, C., Chenavas, J., Hodeau, J.L., Marezio, M., Karpinski, J., and Kaldis, E., Nature 334, 596 (1988).Google Scholar
20.Hazen, R.M., Finger, L.W., and Morris, D.E., Appl. Phys. Lett. 54, 1057 (1989).CrossRefGoogle Scholar
21.Karpinski, J., Kaldis, E., Rusiecki, S., and Jilek, E., J. Less-Common Met. 150, 129 (1989).CrossRefGoogle Scholar
22. For example, Physical Properties of High Temperature Superconductors, edited by Ginsberg, D. E. (World Scientific, Singapore, 1989).Google Scholar