Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:07:53.020Z Has data issue: false hasContentIssue false

Crystal growth of Bi2Sr2Ca2Cu3O10+x and (Bi,Pb)2Sr2Ca2Cu3O10+x by the KCl flux method

Published online by Cambridge University Press:  31 January 2011

Sergey Lee
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Ayako Yamamoto
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Setsuko Tajima
Affiliation:
Superconductivity Research Laboratory, ISTEC, Koto-ku, Tokyo 135–0062, Japan
Get access

Abstract

Bi2Sr2Ca2Cu3O10+x and (Bi,Pb)2Sr2Ca2Cu3O10+x single crystals with a sharp superconducting transition at Tc = 109 K were grown using a modified KCl flux technique. The crystals show platelike morphology with typical dimensions of 0.5 × 0.5 × 0.002 mm3 and 0.25 × 0.25 × 0.001 mm3 for Pb-free and Pb-doped compositions, respectively. The formation of Bi-2212 intergrowth in the crystals is suppressed by utilization of a stable MgO crucible, suppression of the KCl evaporation, and isothermal heat treatment at a temperature close to the melting temperature of the oxide precursor in the flux. Morphology, phase purity, and chemical composition of grown crystals were determined by various analysis methods while the superconducting properties were studied by magnetization and resistivity measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2.Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., and LePage, Y., Phys. Rev B 38, 8885 (1988).CrossRefGoogle Scholar
3.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
4.Matsubara, I., Tanigawa, H., Ogura, T., Yamashita, H., Kinoshita, M., and Kawai, T., Appl. Phys. Lett. 58, 409 (1991).CrossRefGoogle Scholar
5.Matsubara, I., Yamashita, H., and Kawai, T., J. Cryst. Growth 128, 719 (1993).CrossRefGoogle Scholar
6.Chen, W., Franck, J.P., and Jung, J., Phys. Rev B 60, 3527 (1999).CrossRefGoogle Scholar
7.Fujii, T., Watanabe, T., and Matsuda, A., J. Cryst. Growth 175, 223 (2001).Google Scholar
8.Arendt, R., J. Solid State Chem. 8, 339 (1973).CrossRefGoogle Scholar
9.Schneemeyer, L.F., Dover, R.B. van, Glarum, S.H., Sunshine, S.A., Fleming, R.M., Batlogg, B., Siegrist, T., Marshall, J.H., Waszczak, J.V., and Rupp, L.W., Nature 332, 422 (1988).CrossRefGoogle Scholar
10.Katsui, A., Jpn. J. Appl. Phys. 27, L844 (1988).CrossRefGoogle Scholar
11.Balestrino, G., Milani, E., Paoletti, A., Tebano, A., Wang, Y.H., Ruosi, A., Vaglio, R., Valentino, M., and Paroli, P., Appl. Phys. Lett. 64, 1735 (1994).CrossRefGoogle Scholar
12.Osipov, V.N., Nosov, Yu. G., Gurin, V.N., Zimkin, I.N., Kartenko, N.F., and Nikanorov, S.P., Sov. Phys. Solid State 36, 2451 (1994).Google Scholar
13.Chu, S. and Mc, M.E.Henry, J. Mater. Res. 13, 589 (1998).CrossRefGoogle Scholar
14.Goroina, J.L., Kaljuzhnaia, G.A., Martovitsky, V.P., Rodin, V.V., Sentjurina, N.N., and Stepanov, V.A., Solid State Commun. 110, 287 (1999).CrossRefGoogle Scholar
15.Majewski, P., Adv. Mater. 6, 460 (1994).CrossRefGoogle Scholar
16.Yasuda, T. and Takano, S., Jpn. J. Appl. Phys. 30, L349 (1991).Google Scholar
17.Majewski, P., Hettich, B., Schulze, K., and Petzow, G., Adv. Mater. 3, 488 (1991).CrossRefGoogle Scholar
18.M’Hamdi, E.M. and Lacour, C., Ann. Chim. Fr. 17, 421 (1992); 18, 139 (1993).Google Scholar
19.Sastry, P.V.P.S.S. and West, A.R., Physica C 232, 63 (1994); 250, 87 (1995).CrossRefGoogle Scholar
20.Grivel, J-C. and Flukiger, R., Supercond. Sci. Technol. 11, 288 (1998).CrossRefGoogle Scholar
21.Lee, S., Kwon, K.J., Kim, W.S., and Lee, S-I., Physica C 251, 149 (1995).CrossRefGoogle Scholar
22.Han, P.D. and Payne, D.A., J. Cryst. Growth 104, 201 (1990).CrossRefGoogle Scholar
23.Lee, S., Yamamoto, A., and Tajima, S., J. Mater. Res. (in press).Google Scholar
24.Walton, A.G., The formation and properties of precipitates (Interscience Publishers, New York, 1967), p. 71.Google Scholar
25.Tarascon, J.M., McKinnon, W.R., Barboux, P., Hwang, D.M., Bagley, B.G., Greene, L.H., Hull, G.W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).CrossRefGoogle Scholar
26.Hong, B. and Mason, T., J. Am. Ceram. Soc. 74, 1045 (1991).CrossRefGoogle Scholar
27.Lee, S., Eltsev, Yu., Yamamoto, A., and Tajima, S. (submitted).Google Scholar