Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T05:07:27.765Z Has data issue: false hasContentIssue false

Crystal growth and textured microstructures of 1,6-di(N-carbazolyl)-2,4 hexadiyne diacetylene

Published online by Cambridge University Press:  31 January 2011

Jun Liao
Affiliation:
Department of Materials Science and Engineering and the Macromolecular Science and Engineering Center, 2022 H. H. Dow Building, The University of Michigan, Ann Arbor, Michigan 48109-2136
David C. Martin*
Affiliation:
Department of Materials Science and Engineering and the Macromolecular Science and Engineering Center, 2022 H. H. Dow Building, The University of Michigan, Ann Arbor, Michigan 48109-2136
*
b)Author to whom correspondence should be addressed.
Get access

Abstract

We are developing techniques to isolate and characterize grain boundary defects with controlled geometries in 1,6-di(N-carbazolyl)-2,4 hexadiyne (DCHD) diacetylene polymer bicrystals. To be successful in this endeavor, it is important to determine the influence of processing variables such as evaporation rate, solution concentration, and environment on DCHD diacetylene crystal morphology. We have found that large, high quality DCHD diacetylene single crystals can be grown from solution under a controlled atmosphere. The quality of the DCHD crystals can be evaluated by optical microscopy and quantitative digital image analysis. Defect structures in DCHD diacetylene crystals have been studied by transmission electron microscopy (TEM). Two single-crystal textured structures have been found in porous DCHD crystals precipitated from solution: (1) a microfibrillar structure and (2) a “cross-hatched” structure. The porous DCHD crystals show localized shear deformation zones (twins and kinks), but only in those regions where the density is greater than 95% that of the perfect crystal. Lateral chain invariant (LCI) small-angle grain boundaries have been identified in DCHD by HREM.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Martin, D. C. and Thomas, E. L., Philos. Mag. A 64 (4), 903 (1991).CrossRefGoogle Scholar
2.Martin, D. C., Ph.D. Dissertation, University of Massachusetts, 1990.Google Scholar
3.Martin, D. C. and Thomas, E. L., J. Mater. Sci. 26, 5171 (1991).CrossRefGoogle Scholar
4.Wegner, G., Z. Naturforsch 24b, 824 (1969).CrossRefGoogle Scholar
5.Robinson, I. M., Yeung, P. H. J., Galiotis, C., Young, R. J., and Batchelder, D. N., J. Mater. Sci. 21, 3440 (1969).CrossRefGoogle Scholar
6.Galiotis, C., Read, R. T., Yeung, P. H. J., and Young, R. J., J. Polym. Sci., Polym. Phys. Ed. 22, 1589 (1984).CrossRefGoogle Scholar
7.Robinson, I. M., Galiotis, C., Batchelder, D. N., and Young, R. J., J. Mater. Sci. 26, 2293 (1991).CrossRefGoogle Scholar
8.Le Moigne, J., Kajzar, F., and Thierry, A., Macromolecules 24, 2622 (1991).CrossRefGoogle Scholar
9.Kajzar, F. and Messier, J., Nonlinear Optical Properties of Organic Molecules and Crystals, edited by Chemla, D. S. and Zyss, J. (Academic Press, New York, 1987), p. 51.CrossRefGoogle Scholar
10.Sinclair, M., McBranch, D., Moses, D., and Heeger, A. J., Appl. Phys. Lett. 53, 2374 (1988).CrossRefGoogle Scholar
11.Le Moigne, J., Thierry, A., Chollet, P. A., Kajzar, F., and Messier, J., J. Chem. Phy. 88 (10), 6647 (1988).CrossRefGoogle Scholar
12.Thakur, M. and Krol, D. M., Appl. Phys. Lett. 56 (13), 1213 (1990).CrossRefGoogle Scholar
13.Liao, J., Construction and Characterization of Grain Boundaries in Diacetylene Polymer Bicrystals, Ph.D. Dissertation, The University of Michigan (1995).Google Scholar
14.Baughman, R. H., private communication (1992).Google Scholar
15.Schott, M. and Wegner, G., Nonlinear Optical Properties of Organic Molecules and Crystals, Chapter III–1: Basic Structural and Electronic Properties of Polydiacetylenes 2, 3 (1987).CrossRefGoogle Scholar
16.Karl, N., Mol. Cryst. Lig. Cryst. 171, 157 (1989).Google Scholar
17.Penn, B. G., Cardelino, B. H. O., Moore, C. E., Shields, A. W., and Frazier, D. O., Prog. Crystal Growth and Characterization 22, 19 (1991).CrossRefGoogle Scholar
18.Schultz, J. M., J. Mater. Sci. 12, 2258 (1977).Google Scholar
19.Enkelmann, V., Leyrer, R. J., Schleier, G., and Wegner, G., J. Mater. Sci. 15, 168 (1980).CrossRefGoogle Scholar
20.Rosemeier, R., Green, R. E., Baughmann, R. H., J. Appl. Phys. 52 (12), 7129 (1981).CrossRefGoogle Scholar
21.Dudley, M., Sherwood, J. N., Ando, D. J., and Bloor, D., Mol. Cryst. Liq. Cryst. 93, 223 (1983).CrossRefGoogle Scholar
22.Liao, J. and Martin, D. C., in Electrical, Optical, and Magnetic Properties of Organic Solid State, edited by Chiang, L. Y., Garito, A. F., and Sandman, D. J. (Mater. Res. Soc. Symp. Proc. 247, Pittsburgh, PA, 1992), p. 723.Google Scholar
23.Liao, J. and Martin, D. C., Science 260, 1489 (1993).CrossRefGoogle Scholar
24.Baughmann, R. H., J. Polym. Sci., Polym. Phys. Ed. 12, 1511 (1974).CrossRefGoogle Scholar
25.Wegner, G., Pure Appl. Chem. 49, 443 (1977).CrossRefGoogle Scholar
26.Young, R. J. and Petermann, J., J. Polym. Sci., Polym. Phys. Ed. 20, 961 (1982).Google Scholar
27.Read, R. T. and Young, R. J., J. Mater. Sci. 19, 327 (1984).CrossRefGoogle Scholar
28.Young, R. J., Read, R. T., and Petermann, J., J. Mater. Sci. 16, 1835, 1842 (1981).CrossRefGoogle Scholar
29.Galiotis, C., Young, R. J., Yeung, P. H. J., and Batchelder, D. N., J. Mater. Sci. 19, 3640 (1984).CrossRefGoogle Scholar
30.Baughmann, R. H., Gleiter, H., and Sendfeld, N., J. Polym. Sci., Polym. Phys. Ed. 13, 1871 (1975).Google Scholar
31.Young, R. J., Bloor, D., Batchelder, D. N., and Hubble, C. L., J. Polym. Sci., Polym. Phys. Ed. 13, 62 (1978).Google Scholar
32.Young, R. J., Dulniak, R., Batchelder, D. N., and Bloor, D., J. Polym. Sci., Polym. Phys. Ed. 17, 1325 (1979).Google Scholar
33.Read, R. T. and Young, R. J., Philos. Mag. A 42 (5), 629 (1980).CrossRefGoogle Scholar
34.Yeung, P. H. J., Ph.D. Thesis, University of London (1984).Google Scholar
35.Yee, K. C. and Chance, R. R., J. Polym. Sci., Polym. Phys. Ed. 16, 431 (1978).Google Scholar
36.Yeung, P. H. and Young, R. J., Polymer 27, 202 (1986).CrossRefGoogle Scholar
37.Donova, K. J., Freeman, P. D., and Wilson, E. G., in Polydi-acetylenes, edited by Bloor, D. and Chance, R., NATO ASI Series E, Applied Sciences, No. 102 (Dordrecht, Boston, 1985).Google Scholar
38.Enkelmann, V., Schleier, G., Wegner, G., Eichele, H., and Schwoerer, M., Chem. Phys. Lett. 52 (2), 314 (1977).CrossRefGoogle Scholar
39.Kody, R. and Martin, D. C., Polym. Sci. Eng. (1995), in press.Google Scholar
40.Cohen, Y. and Thomas, E. L., Macromolecules 21, 433 (1988).CrossRefGoogle Scholar
41.Schermann, W., Wegner, G., Williams, J. O., and Thomas, J.M., J. Polym. Sci., Polym. Phys. Ed. 13, 753 (1975).Google Scholar
42.Baughmann, R. H., J. Appl. Phys. 43, 4362 (1972).CrossRefGoogle Scholar
43.Vezie, D., Ph.D. Dissertation, MIT (1994).Google Scholar
44.Vladimirov, V. I., Zembil'gotov, A. G., and Pertsev, N. A., Sov. Phys. Solid State 31 (5), 852 (1989).Google Scholar
45.Pertsev, N. A., Romanov, A. E., and Vladimirov, V. I., J. Mater. Sci. 16, 2084 (1981).CrossRefGoogle Scholar
46.Young, R. J. and Baughmann, R. H., J. Mater. Sci. 13, 55 (1978).CrossRefGoogle Scholar
47.Martin, D. C. and Thomas, E. L., Proc. Cambridge Conference of Deformation, Yield, and Fracture of Polymers, Churchill College, Cambridge, England, April, 1991.Google Scholar
48.Young, R. J. and Yeung, P. H. J., J. Mater. Sci. Lett. 4, 1327 (1985).CrossRefGoogle Scholar