Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T22:12:53.976Z Has data issue: false hasContentIssue false

Creep of a niobium beryllide, Nb2Be17

Published online by Cambridge University Press:  31 January 2011

T.G. Nieh
Affiliation:
Lawrence Livermore National Laboratory, L-350, P.O. Box 808, Livermore, California 94550
J. Wadsworth
Affiliation:
Lawrence Livermore National Laboratory, L-350, P.O. Box 808, Livermore, California 94550
T.C. Chou
Affiliation:
Lockheed, OI93-10, B/204, 3251 Hanover Street, Palo Alto, California 94304-1191
D. Owen
Affiliation:
Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla, California 92093-0411
A.H. Chokshi
Affiliation:
Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, La Jolla, California 92093-0411
Get access

Abstract

A niobium beryllide, Nb2Be17, has been prepared by powder-metallurgy techniques and the mechanical properties characterized both at room and elevated temperatures. Microhardness and fracture toughness were measured at room temperature. Hardness and hot-hardness test results indicated that, although the material was brittle at low temperatures, it became plastic at elevated temperatures (>1000 °C). Creep properties of Nb2Be17 were studied at temperatures from 1250 to 1350 °C and applied stresses from 10 to 90 MPa. The stress exponent, determined from stress-change tests, was about 3, and the activation energy, determined from temperature-change tests, was about 575 kJ/mol. The creep of Nb2Be17 at high temperature is apparently controlled by dislocation glide; this proposal was supported by transient creep experiments. Comparisons have been made between the creep properties of Nb2Be17 and other intermetallics.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nieh, T. G., Wadsworth, J., and Liu, C. T., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 743.Google Scholar
2Lee, J. S. and Nieh, T. G., in Oxidation of Intermetallic Compounds, edited by Grobstein, T. and Doychak, J. (The Minerals, Metals & Materials Society, Warrendale, PA, 1988), p. 271.Google Scholar
3Booker, J., Paine, R. M., and Stonehouse, A. J., Investigation of Intermetallic Compounds for Very High Temperature Applications, The Brush Beryllium Company, USAF Contract 33 (616)-6540, WADD Technical Report 60889 (March 1961).Google Scholar
4Stonehouse, A. J., Paine, R. M., and Beaver, W. W., in Mechanical Properties of Intermetallic Compounds, edited by Westbrook, J. H. (John Wiley and Sons, Inc., New York, 1960), p. 297.Google Scholar
5Francis, K. R., Ph.D. Dissertation, University of Arizona (1969).Google Scholar
6Lewis, J.R., J. Metals 13, 357 (1961).Google Scholar
7Lewis, J.R., J. Metals 13, 829 (1961).Google Scholar
8Nieh, T. G. and Wadsworth, J., Scripta Metall. Mater. 24, 1489 (1990).CrossRefGoogle Scholar
9Bruemmer, S. M., Chariot, L. A., Brimhall, J. L., Henager, C. H. Jr., and Hirth, J.P., Philos. Mag. 65A (45), 1083 (1992).CrossRefGoogle Scholar
10Martin, P. L., Mendiratta, M. G., and Lipsitt, H. A., Metall. Trans. A 14, 2170 (1983).CrossRefGoogle Scholar
11Mendiratta, M. G. and Lipsitt, H.A., J. Mater. Sci. 15, 2985 (1980).CrossRefGoogle Scholar
12Whittenberger, J.D., J. Mater. Sci. 22, 394 (1987).CrossRefGoogle Scholar
13Yaney, D.L. and Nix, W.D., J. Mater. Sci. 23, 3088 (1988).CrossRefGoogle Scholar
14Whittenberger, J.D., Mater. Sci. Eng. 73, 87 (1985).CrossRefGoogle Scholar
15Schneibel, J.H. and Porter, W.D., J. Mater. Res. 3, 403 (1988).CrossRefGoogle Scholar
16Nieh, T.G., Wadsworth, J., Grensing, F.C., and Yang, J-M., J. Mater. Sci. 27, 2660 (1992).CrossRefGoogle Scholar
17Zalkin, A., Sands, D.R., and Kirkorian, O.H., Acta Crystallogr. 12, 713 (1959).CrossRefGoogle Scholar
18Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
19Lawn, B.R., Marshall, D.B., Chantikul, P., and Anstis, G.R., J. Aust. Ceram. Soc. 16 (1), 4 (1980).Google Scholar
20Fleischer, R. L. and Zabala, R. J., Metall. Trans. A 20, 1279 (1989).CrossRefGoogle Scholar
21Nieh, T.G. and Wadsworth, J., Scripta Metall. 23, 871 (1989).CrossRefGoogle Scholar
22Yaney, D. L., Gibeling, J. C., and Nix, W. D., Acta Metall. 35, 1391 (1987).CrossRefGoogle Scholar
23Mukhopadhyay, J., Kaschner, G. C., and Muhkerjee, A. K., in Superplasticity in Aerospace II, edited by McNelley, T. R. and Heikkenen, C. (The Minerals, Metals & Materials Society, Warrendale, PA, 1990), pp. 3346.Google Scholar
24Nieh, T.G. and Oliver, W.C., Scripta Metall. 23, 851 (1989).CrossRefGoogle Scholar
25Yang, H. S., Jin, P., Dalder, E., and Muhkerjee, A. K., Scripta Metall. Mater. 25, 1223 (1991).CrossRefGoogle Scholar
26Henager, C. H. Jr., Bruemmer, S. M., and Jacobson, R. E., Mater. Sci. Eng. A153, 416 (1992).CrossRefGoogle Scholar
27McNelley, T. R. and Kalu, P. N., in International Conference on Superplasticity in Advanced Materials (ICSAM-91), edited by Hori, S., Tokizane, M., and Furushiro, N. (The Japan Society for Research on Superplasticity, 1991), pp. 413421.Google Scholar
28Woodford, D. A., Trans. Am. Soc. Met. Quarterly 62, 291 (1969).Google Scholar