Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:13:28.853Z Has data issue: false hasContentIssue false

Creep behavior of in situ dual-scale particles-TiB whisker and TiC particulate-reinforced titanium composites

Published online by Cambridge University Press:  31 January 2011

Z. Z. Ma
Affiliation:
Department of Metallurgical Engineering, University of Missouri, Rolla, Missouri 65409
S. S. Tjong
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, Peoples Republic of China
X. X. Meng
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, Peoples Republic of China
Get access

Abstract

A titanium composite reinforced by in situ dual-scale particle, high-aspect-ratio TiB whiskers and fine TiC particulates was fabricated by a reactive hot pressing technique from a B4C–Ti system. The composite was subjected to creep investigations in compression at 873–923 K. This composite exhibited a stress exponent of 4.5–4.6 and a creep activation energy of 298 kJ/mol. By comparison, unreinforced Ti exhibited a stress exponent of 5.2–5.3 and a creep activation energy of 259 kJ/mol. No change in the stress exponent with varying creep rates was observed in both composite and unreinforced Ti under the investigated creep rates. The creep resistance of the composite was more than one order of magnitude higher than that of the unreinforced Ti. The load transfer mechanism accounted for this result. The creep of both composite and unreinforced Ti was controlled by lattice diffusion in the titanium matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Westwood, A.R.C., Metall. Trans. 19A, 749 (1988).CrossRefGoogle Scholar
2.Ranganath, S., Vijayakumar, M., and Subrahmanyam, J., Mater. Sci. Eng. A149, 253 (1992).CrossRefGoogle Scholar
3.Lu, Y.X., Li, D.X., Ping, D.H., Bi, J., and Ma, Z.Y., J. Mater. Sci. Technol. 13, 41 (1997).CrossRefGoogle Scholar
4.Ranganath, S., Roy, T., and Mishra, R.S., Mater. Sci. Technol. 12, 219 (1996).CrossRefGoogle Scholar
5.Tsang, H.T., Chao, C.G., and Ma, C.Y., Scripta Mater. 35, 1007 (1996).CrossRefGoogle Scholar
6.Ranganath, S., J. Mater. Sci. 32, 1 (1997).Google Scholar
7.Soboyejo, W.O., Lederich, R.J., and Sastry, S.M.L., Acta Metall. Mater. 42, 2579 (1994).CrossRefGoogle Scholar
8.Zhang, X.N., Lu, W.J., Zhang, D., and Wu, R.J., Scripta Mater. 14, 39 (1999).CrossRefGoogle Scholar
9.Ma, Z.Y., Tjong, S.C., and Geng, L., Scripta Mater. 42, 367 (2000).CrossRefGoogle Scholar
10.Tjong, S.C. and Ma, Z.Y., Mater. Sci. Eng. Reports 29, 49 (2000).CrossRefGoogle Scholar
11.Li, D.X., Ping, D.H., Lu, Y.X., and Ye, H.Q., Mater. Lett. 16, 322 (1993).CrossRefGoogle Scholar
12.Zhu, S.J., Lu, Y.X., Wang, Z.G., and Bi, J., Mater. Lett. 13, 199 (1992).CrossRefGoogle Scholar
13.Ranganath, S. and Mishra, R.S., Acta Mater. 44, 927 (1996).CrossRefGoogle Scholar
14.Tsang, H.T., Chao, C.G., and Ma, C.Y., Scripta Mater. 37, 1359 (1997).CrossRefGoogle Scholar
15.Zhu, S.J., Mukherji, D., Chen, W., Lu, Y.X., Wang, Z.G., and Wahi, R.P., Mater. Sci. Eng. A256, 301 (1998).CrossRefGoogle Scholar
16.Zhu, S.J., Lu, Y.X., Wang, Z.G., and Bi, J., in Proc. of Ninth Int. Conf. on Composite Materials (ICCM/9), edited by Miravete, A. (University of Zaragona and Woodhead Publishing Limited, Spain, 1993), Vol. 1, p. 594.Google Scholar
17.Zhu, J.H., Liaw, P.K., Corum, J.M., and McCoy, H.E. Jr., Metall. Mater. Trans. 30, 1569 (1999).CrossRefGoogle Scholar
18.Ma, Z.Y., Tjong, S.C., and Li, S.X., Metall. Mater. Trans. 32A, 1019 (2001).CrossRefGoogle Scholar
19.Malakondaiah, G. and Rao, P.R., Acta Metall. 29, 1263 (1981).CrossRefGoogle Scholar
20.Mishra, R.S., JOM 51, 65 (1999).CrossRefGoogle Scholar
21.Rösler, J. and Bäker, M., Acta Mater. 48, 3553 (2000).CrossRefGoogle Scholar
22.Park, K.T. and Mohamed, F.A., Metall. Mater. Trans. 26A, 3119 (1995).CrossRefGoogle Scholar
23.Li, Y. and Langdon, T.G., Metall. Mater. Trans. 29A, 2523 (1998).CrossRefGoogle Scholar
24.Peng, L.M., Zhu, S.J., Ma, Z.Y., Wang, F.G., Chen, H.R., and Northwood, D.O., Mater. Sci. Eng. A256, 63 (1999).CrossRefGoogle Scholar
25.Kelly, A. and Street, K.N., Proc. R. Soc. (London) 328A, 267 (1972).Google Scholar
26.Kelly, A. and Street, K.N., Proc. R. Soc. (London), 328A, 283 (1972).Google Scholar