Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T22:23:33.930Z Has data issue: false hasContentIssue false

Creep behavior of a polycrystalline nickel aluminide: Ni-23.5 at.% A1-0.5 at.% Hf-0.2 at.% B

Published online by Cambridge University Press:  03 March 2011

J. H. Schneibel
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
G. F. Petersen
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The creep behavior of a poly crystalline nickel aluminide with the composition Ni-23.5 at.% Al-0.5 at. % Hf-0.2 at. % B has been measured as a function of stress, temperature, and grain size. At high stresses, of the order of 100 MPa, the strain rate is nonlinear in the stress, with a stress exponent greater than two. Below approximately 10 MPa, at 1033 K, the steady-state strain rate is almost proportional to the stress, indicating that diffusional creep is rate controlling. Calculations of expected Nabarro—Herring and Coble creep rates did not answer whether diffusive mass transport through the grains, or along the grain boundaries, is rate controlling. The grain-size dependence of the strain rate, however, indicates predominance of volume diffusion control, i.e., Nabarro—Herring creep, for our experimental conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Liu, C. T. and Koch, C. C., in Proceedings of a Public Workshop on Trends in Critical Materials Requirements for Steels of the Future; Conservation and Substitution Technology for Chromium (National Bureau of Standards, Washington, D. C., 1983), Report No. NBS 1R-83-2679-2.Google Scholar
2Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213(1985).CrossRefGoogle Scholar
3Liu, C. T. and White, C. L., in the Proceedings of the Materials Research Society Symposium on High-Temperature Ordered Intermetallic Compounds, edited by Koch, C. C., Liu, C. T., and Stoloff, N. S. (Mat. Res. Soc, Pittsburgh, PA, 1985), Vol. 39, p. 365.Google Scholar
4Burton, B., in the Diffusion and Defect Monograph Series, No. 5, edited by Adda, Y., LeClaire, A. D., Slifkin, L. M., and Wöhlbier, F. H. (Trans. Tech. S. A., Aedermannsdorf, Switzerland, 1977).Google Scholar
5Ashby, M. F., Acta Metall. 20, 887 (1972).CrossRefGoogle Scholar
6Schneibel, J. H. and Petersen, G. F., Scr. Metall. 17, 353 (1983).CrossRefGoogle Scholar
7Exner, H. E., Int. Metall. Rev. 17, 25 (1972).CrossRefGoogle Scholar
8Burton, B., Crossland, I. G., and Greenwood, G. W., Met. Sci. 14, 134 (1980).CrossRefGoogle Scholar
9Flinn, P. A., Trans. Metall. Soc. AIME 218, 145 (1960).Google Scholar
10Nicholls, J. R. and Rawlings, R. D., J. Mater. Sci. 12, 2456 (1977).CrossRefGoogle Scholar
11Mohamed, F. A. and Ginter, T. J., Acta Metall. 30, 1869 (1982).CrossRefGoogle Scholar
12Ilschner, B., Hochtemperatur-Plastizität (Springer, Berlin, 1973), p. 101.CrossRefGoogle Scholar
13Raj, R. and Gosh, A. K., Acta Metall. 29, 283 (1981).CrossRefGoogle Scholar
14Raj, R. and Ashby, M. F., Metall. Trans. 2, 1113 (1971).CrossRefGoogle Scholar
15Chou, T. C. and Chou, Y. T., in Ref. 3, p. 461.Google Scholar
16Friedel, J., Dislocations (Pergamon, Oxford, 1964), p. 289.Google Scholar
17Hwang, J. C. M. and Balluffi, R. W., Scr. Metall. 12, 709 (1978).CrossRefGoogle Scholar
18Hazzledine, P. M., in the Proceedings of the 4th Risø International Symposium on Deformation of Multi-Phase and Particle Containing Materials, September 5–9, 1983, edited by Bilde-SøSrensen, J. B., Hansen, N., Horsewell, A., LefFers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1983), p. 27.Google Scholar