Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T04:38:10.101Z Has data issue: false hasContentIssue false

Cracking of Brittle Coatings Adhesively Bonded to Substrates of Unlike Modulus

Published online by Cambridge University Press:  31 January 2011

Kee Sung Lee
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Young-Woo Rhee
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Douglas H. Blackburn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Herzl Chai
Affiliation:
Department of Solid Mechanics, Materials and Structures, Faculty of Engineering, Tel Aviv University, Israel 69978
Get access

Abstract

The role of elastic mismatch in determining critical conditions for indentation fracture in brittle coatings on substrates of unlike modulus was investigated. A model transparent trilayer system, consisting of a glass coating layer bonded to a thick substrate of different glass or polymer by a thin layer of epoxy adhesive, facilitated in situ observations of crack initiation and propagation. A tungsten carbide sphere was used to load the layer system. Abrasion flaws were introduced into the top and bottom glass coating surfaces to control the flaw populations and to predetermine the origins of fracture: cone cracks occurred at abraded top surfaces, radial cracks at abraded bottom surfaces. Analytical relations for the critical loads are presented for each crack system in terms of elastic modulus mismatch, indenter and coating dimensions, and material fracture parameters. Implications concerning materials selection for resistance to crack initiation are considered.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).CrossRefGoogle Scholar
2.Diao, D.F., Kato, K., and Hokkirigawa, K., Trans ASME J. Tribol. 116, 860 (1994).CrossRefGoogle Scholar
3.An, L., Chan, H.M., Padture, N.P., and Lawn, B.R., J. Mater. Res. 11, 204 (1996).CrossRefGoogle Scholar
4.Pajares, A., Wei, L., Lawn, B.R., Padture, N.P., and Berndt, C.C., Mater. Sci. Eng. A 208, 158 (1996).CrossRefGoogle Scholar
5.Wuttiphan, S., Lawn, B.R., and Padture, N.P., J. Am. Ceram. Soc. 79, 634 (1996).CrossRefGoogle Scholar
6.Fischer-Cripps, A.C., Lawn, B.R., Pajares, A., and Wei, L., J. Am. Ceram. Soc. 79, 2619 (1996).CrossRefGoogle Scholar
7.Lardner, T.J., Ritter, J.E., and Zhu, G-Q., J. Am. Ceram. Soc. 80, 1851 (1997).CrossRefGoogle Scholar
8.Chan, H.M., Ann. Rev. Mater. Sci. 27, 249 (1997).CrossRefGoogle Scholar
9.Lee, K.S., Wuttiphan, S., Hu, X.Z., Lee, S.K., and Lawn, B.R., J. Am. Ceram. Soc. 81, 571 (1998).CrossRefGoogle Scholar
10.Lee, K.S., Lee, S.K., Lawn, B.R., and Kim, D.K., J. Am. Ceram. Soc. 81, 2394 (1998).CrossRefGoogle Scholar
11.Jung, Y.G., Wuttiphan, S., Peterson, I.M., and Lawn, B.R., J. Dent. Res. 78, 887 (1999).CrossRefGoogle Scholar
12.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).CrossRefGoogle Scholar
13.Zhao, H., Hu, X.Z., Bush, M.B., and Lawn, B.R., J. Mater. Res. 15, 676 (2000).CrossRefGoogle Scholar
14.Chai, H., Lawn, B.R., and Wuttiphan, S., J. Mater. Res. 14, 3805 (1999).CrossRefGoogle Scholar
15.Chai, H. and Lawn, B.R., J. Mater. Res. 15, 1017 (2000).CrossRefGoogle Scholar
16.Frank, F.C. and Lawn, B.R., Proc. R. Soc. London A 299, 291 (1967).Google Scholar
17.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).CrossRefGoogle Scholar
18.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, United Kingdom, 1993), Chaps. 7 and 8.CrossRefGoogle Scholar
19.Wiederhorn, S.M., J. Am. Ceram. Soc. 52, 99 (1969).CrossRefGoogle Scholar
20.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959), Chap. 8.Google Scholar
21.Ramsey, P.M., Chandler, H.W., and Page, T.F., Surf. Coat. Technol. 49, 504 (1991).CrossRefGoogle Scholar
22.Shaw, M.C., Marshall, D.B., Dadkhah, M.S., and Evans, A.G., Acta Metall. 41, 3311 (1993).CrossRefGoogle Scholar
23.Peterson, I.M., Pajares, A., Lawn, B.R., Thompson, V.P., and Rekow, E.D., J. Dent. Res. 77, 589 (1998).CrossRefGoogle Scholar