Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T04:52:20.136Z Has data issue: false hasContentIssue false

Corrosion performance of ferrous and refractory metals in molten salts under reducing conditions

Published online by Cambridge University Press:  31 January 2011

J. E. Indacochea
Affiliation:
Argonne National Laboratory, Chemical Technology Division, Building 205, 9700 South Cass Avenue, Argonne, Illinois 60439–4837
J. L. Smith
Affiliation:
Argonne National Laboratory, Chemical Technology Division, Building 205, 9700 South Cass Avenue, Argonne, Illinois 60439–4837
K. R. Litko
Affiliation:
Argonne National Laboratory, Chemical Technology Division, Building 205, 9700 South Cass Avenue, Argonne, Illinois 60439–4837
E. J. Karell
Affiliation:
Argonne National Laboratory, Chemical Technology Division, Building 205, 9700 South Cass Avenue, Argonne, Illinois 60439–4837
Get access

Abstract

A lithium reduction technique to condition spent fuel for disposal has been developed at the Argonne National Laboratory. There is a need to ensure adequate vessel longevity through corrosion testing and, if necessary, materials development. Several ferrous alloys and tantalum specimens were submitted to a corrosion test at 725 °C for thirty days in an argon atmosphere, using a lithium-chloride salt saturated with lithium metal and containing small amounts of lithium oxide and lithium nitride. The samples did not show dimensional or weight change, nor could corrosion attack be detected metallographically. The lithium-saturated salt system did not show any behavior similar to that of liquid lithium corrosion. From testing in other gas compositions, it appears that the presence of oxygen in the system is necessary to produce severe corrosion.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bloom, H., The Chemistry of Molten Salts (W.A. Benjamin, New York, 1967).Google Scholar
2.Shores, D. A. and Singh, P., Molten Carbonate Fuel Cell Technology, edited by Selman, J. R. and Claar, T. D. (The Electrochemical Society Proceedings Series, Pennington, NJ, 1984), PV 84–13, p. 271.Google Scholar
3.Hsu, H. S., Corrosion 86, Paper 85, NACE, Houston, TX (1986).Google Scholar
4.Koger, J.W., Metals Handbook, 9th ed. (ASM INTERNATIONAL, Materials Park, OH, 1987), Vol. 13, pp. 5060.Google Scholar
5.Burrows, B. W. and Hills, G. J., Electrochim. Acta 15, 445 (1970).CrossRefGoogle Scholar
6.Every, R. L. and Grimsley, R. L., J. Electroanal. Chem. Interfacial Electrochem. 9, 165 (1965).Google Scholar
7.Inman, D. and Weaver, M. J., J. Electroanal. Chem. Interfacial Electrochem. 51, 45 (1974).CrossRefGoogle Scholar
8.Takahashi, M., Katsuyama, Y., and Kanzaki, Y., J. Electroanal. Chem. Interfacial Electrochem. 62, 363 (1975).CrossRefGoogle Scholar
9.Feng, X. K. and Melendres, C. A., J. Electrochem. Soc.: Electrochem. Sci. Technol. 129 (6), 12451249 (1982).CrossRefGoogle Scholar
10.Ianello, L.C., “Fusion Reactor First Wall Materials,” WASH-1206, U.S. Atomic Energy Commission, Germantown, MD (1972).Google Scholar
11.Weeks, J. R. and Klamut, C.J., Corrosion of Reactor Materials, IAEA, Vienna 1, 105 (1962).Google Scholar
12.Busse, C. A., Corrosion Sci. 10, 65 (1970).CrossRefGoogle Scholar
13.Harrison, J. D. and Wagner, C., Acta Metall. 7, 722 (1959).CrossRefGoogle Scholar
14.Leavenworth, H. W. and Gregory, D. P., Corrosion 18, 437 (1962).CrossRefGoogle Scholar
15.Maroni, V. A., Cairns, E. J., and Cafasso, F. A., ANL-8001, Argonne National Laboratory (1973).Google Scholar
16.Tortorelli, R.F., Metals Handbook, 9th ed. (ASM INTERNATIONAL, Materials Park, OH, 1987), Vol. 13, pp. 5660.Google Scholar
17.DiStefano, J. R. and Litman, A.P., Corrosion 20, 392 (1964).CrossRefGoogle Scholar
18.Hoffman, E.E., ORNL-2675, Oak Ridge National Laboratory (1959).Google Scholar
19.DiStefano, J.R. and Hoffman, E.E., ORNL-3424, Oak Ridge National Laboratory (1963).Google Scholar
20.Litman, A.P., AEC Report ORNL-3751, Oak Ridge National Laboratory (1965).Google Scholar
21.Wilkinson, W.D. and Yagee, F.L., ANL-4990, Argonne National Laboratory (Oct. 13, 1950).Google Scholar
22.Yonco, R. M., Veleckis, E., and Maroni, V. A., J. Nucl. Mater. 57, 317 (1975).CrossRefGoogle Scholar
23.Klueh, R. L., Corrosion 24, 416422 (1969).CrossRefGoogle Scholar
24.Klueh, R. L., Metall. Trans. 3, 21452150 (1972).CrossRefGoogle Scholar
25.Klueh, R. L., Corrosion by Liquid Metals, Metallurgical Society of AIME Proceedings (Plenum Press, New York, 1970), p. 170.Google Scholar
26.DiStefano, J.R., AEC Report ORNL-3551, Oak Ridge National Laboratory (1964).Google Scholar
27.Patterson, R. A. and Olson, D. L., J. Nucl. Mater. 57, 312 (1975).CrossRefGoogle Scholar
28.Cathcart, J. V. and Manly, W.D., Corrosion 12, 87 (1956).CrossRefGoogle Scholar
29.Reeves, J. A., Olson, D. L., and Bradley, W. L., Nucl. Technol. 30, 385 (1976).CrossRefGoogle Scholar