Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-21T14:49:08.705Z Has data issue: false hasContentIssue false

Correlation of Bi and Cu valencies with structural modulation in Bi2Sr2(Ca1−x Yx)Cu2Oy

Published online by Cambridge University Press:  31 January 2011

T. Kawano*
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1-Chome Koto-ku, Tokyo 135, Japan
F. Munakata
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1-Chome Koto-ku, Tokyo 135, Japan
H. Yamauchi
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1-Chome Koto-ku, Tokyo 135, Japan
S. Tanaka
Affiliation:
Superconductivity Research Laboratory, ISTEC, 10-13 Shinonome 1-Chome Koto-ku, Tokyo 135, Japan
*
a)Permanent address: 7-7 Suehiro-cho, 1-chrome, Tsurumi-ku, Yokohama 230, Japan.
Get access

Abstract

The valencies of the Bi and Cu ions in Bi2Sr2(Ca1−x Yx)Cu2Oy were determined separately by a coulometric titration technique. The Cu valency decreased monotonically from 2.16 to 2.04 with increasing Y content over the range from 0 to 1. Superconductivity occurred for Cu valency greater than 2.1. The Bi valency was also found to decrease from +3.12 to +2.99 as the Y content increased. It leveled off at ∼ +3.0 for the Y content larger than 0.8. This change in the Bi valency was correlated with the change in the structural modulation period and with its transformation from an incommensurate to a commensurate state.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Maeda, H., Tanaka, Y., Fukutomi, M., and Asano, T., Jpn. J. Appl. Phys. 27, L209 (1988).CrossRefGoogle Scholar
2.Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L372 (1988).CrossRefGoogle Scholar
3.Tamegai, T., Koga, K., Suzuki, K., Ichihara, M., Sakai, F., and lye, Y., Jpn. J. Appl. Phys. 28, LI 12 (1989).Google Scholar
4.Inoue, Y., Shichi, Y., Munakata, F., and Yamanaka, M., Phys. Rev. B 40, 7307 (1989).CrossRefGoogle Scholar
5.Cheetham, A. K., Chippindale, A. M., and Hibble, S. J., Nature 21, 333 (1988).Google Scholar
6.Yamamoto, A., Onoda, M., Takayama-Muromachi, E., and Izumi, F., Phys. Rev. B 42, 4228 (1990).Google Scholar
7.Zandbergen, W. W., Groen, W. A., Mijlhoff, F. C., van Tendeloo, G., and Amelinckx, S., Physica C 156, 325 (1988).CrossRefGoogle Scholar
8.Hewat, E. A., Capponi, J. J., and Marezio, M., Physica C 157, 502 (1989).CrossRefGoogle Scholar
9.Wu, Xian Liang, Zhang, Zhe, Wang, Yue Li, and Lieber, Charles M., Science 248, 1211 (1990).CrossRefGoogle Scholar
10.Kurusu, K., Takami, H., and Shintomi, K., Analyst 114, L1341 (1989).Google Scholar
11.Tokura, Y., Torrance, J. B., Huang, T. C., and Nazzal, A. I., Phys. Rev. B 38, 7156 (1988).Google Scholar
12.Shimakawa, Y., Kubo, Y., Manako, T., Igarashi, H., Izumi, F., and Asano, H., Phys. Rev. B 42, 10165 (1990).Google Scholar