Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:31:48.045Z Has data issue: false hasContentIssue false

Correlation between the trap state spectra and dielectric behavior of CaCu3Ti4O12

Published online by Cambridge University Press:  14 January 2011

K. Bärner
Affiliation:
Department of Physics, University Göttingen, 1-37077 Göttingen, Germany
X.J. Luo
Affiliation:
Faculty of Physics & Electronic Technology, Hubei University, Wuhan 430062, People’s Republic of China
X.P. Song
Affiliation:
Faculty of Physics & Electronic Technology, Hubei University, Wuhan 430062, People’s Republic of China
C. Hang
Affiliation:
Faculty of Physics & Electronic Technology, Hubei University, Wuhan 430062, People’s Republic of China
S.S. Chen
Affiliation:
Faculty of Physics & Electronic Technology, Hubei University, Wuhan 430062, People’s Republic of China
I.V. Medvedeva
Affiliation:
Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, Ekaterinburg 620219, Russia
C.P. Yang*
Affiliation:
Faculty of Physics & Electronic Technology, Hubei University, Wuhan 430062, People’s Republic of China; and State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The temperature dependence of the various electric relaxation times in the perovskite oxide CaCu3Ti4O12 (CCTO) is determined (i) by trap state spectroscopy and (ii) by the dielectric loss function. A similarity in both number and properties of the (i) and (ii) relaxation times was found, suggesting that the dielectric response is strongly correlated with the trap state relaxation, although some differences remain. One or more dipoles developing charged trap states are considered responsible, and the experimental dielectric response of CCTO and Mn substituted CCTO are explored.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Subramanian, M.A., Dong, L., Duan, N., Reisner, B.A., and Sleight, A.W.: High-dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323 (2000).CrossRefGoogle Scholar
2.Ramirez, A.P., Subramanian, M.A., Gardel, M., Blumberg, G., Li, D., Vogt, T., and Shapiro, S.M.: Giant dielectric constant response in a copper-titanate. Solid State Commun. 115, 217 (2000).CrossRefGoogle Scholar
3.Chen, L. and Wang, C.L.: First principles study of the electron structures of CaCu3Mn4O12 and CaCu3Ti4O12. J. Magn. Magn. Mater. 312, 266 (2007).CrossRefGoogle Scholar
4.Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., and Ramirez, A.P.: Optical response of high-dielectric constant perovskite-relative oxide. Science 293, 673 (2001).CrossRefGoogle ScholarPubMed
5.Ni, L. and Chen, X.M.: Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 91, 122905 (2007).CrossRefGoogle Scholar
6.Shriprakash, B. and Varma, K.B.R.: Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics: A comparative study. Z. Phys. B: Condens. Matter 382, 312 (2006).CrossRefGoogle Scholar
7.Adams, T.B., Sinclair, D.C., and West, A.R.: Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321 (2002).3.0.CO;2-P>CrossRefGoogle Scholar
8.Lunkenheimer, P., Fichtl, R., Ebbinghaus, S.G., and Loidl, A.: Non-intrinsic origin of the colossal dielectric constants in CaCu3Ti4O12. Phys. Rev. B 70, 172102 (2004).CrossRefGoogle Scholar
9.Sinclair, D.C., Adams, T.A., Morrison, F.D., and West, A.R.: CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 80, 2153 (2002).CrossRefGoogle Scholar
10.Adams, T.B., Sinclair, D.C., and West, A.R.: Characterization of grain boundary impedances in fine- and coarse-grained CaCu3Ti4O12 ceramics. Phys. Rev. B 73, 094124 (2006).CrossRefGoogle Scholar
11.Cao, G.H., Feng, L.X., and Wang, C.: Grain-boundary and subgrain-boundary effects on the dielectric properties of CaCu3Ti4O12 ceramics. J. Phys. D: Appl. Phys. 40, 2899 (2007).CrossRefGoogle Scholar
12.Shao, S.F., Zhang, J.L., Zheng, P., Zhong, W.L., and Wang, C.L.: Microstructure and electrical properties of CaCu3Ti4O12 ceramics. J. Appl. Phys. 99, 084106 (2006).CrossRefGoogle Scholar
13.Kalinin, S.V., Shin, J., Veith, G.M., Baddorf, A.P., Lobanov, M.V., Runge, H., and Greenblatt, M.: Real space imaging of the microscopic origins of the ultrahigh-dielectric constant in polycrystalline CaCu3Ti4O12. Appl. Phys. Lett. 86, 102902 (2005).CrossRefGoogle Scholar
14.Liu, J.J., Duan, C.G., Mei, W.N., Smith, R.W., and Hardy, J.R.: Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3). J. Appl. Phys. 98, 093703 (2005).CrossRefGoogle Scholar
15.Wang, C.C. and Zhang, L.W.: Surface-layer effect in CaCu3Ti4O12. Appl. Phys. Lett. 88, 042906 (2006).CrossRefGoogle Scholar
16.Li, J., Sleight, A.W., and Subramanian, M.A.: Evidence for internal resistive barriers in a crystal of the giant dielectric-constant material: CaCu3Ti4O12. Solid State Commun. 135, 260 (2005).CrossRefGoogle Scholar
17.Fang, T.T., Lin, W.J., and Lin, C.Y.: Evidence of the ultrahigh-dielectric constant of CaSiO3-doped CaCu3Ti4O12 from its dielectric response, impedance spectroscopy, and microstructure. Phys. Rev. B 76, 045115 (2007).CrossRefGoogle Scholar
18.Li, W. and Schwartz, R.W.: Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B 75, 012104 (2007).CrossRefGoogle Scholar
19.Lunkenheimer, P., Bobnar, V., Pronin, A.V., Ritus, A.I., Volkov, A.A., and Loidl, A.: Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002).CrossRefGoogle Scholar
20.Deng, G., Yamada, T., and Muralt, P.: Evidence for the existence of a metal-insulator-semiconductor junction at the electrode interfaces of CaCu3Ti4O12 thin film capacitors. Appl. Phys. Lett. 91, 202903 (2007).CrossRefGoogle Scholar
21.Deng, G., Xanthopoulos, N., and Muralt, P.: Chemical nature of colossal dielectric constant of CaCu3Ti4O12 thin film by pulsed laser deposition. Appl. Phys. Lett. 92, 172909 (2008).CrossRefGoogle Scholar
22.Chung, S.Y., Kim, I.D., and Kang, S.J.: Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774 (2004).CrossRefGoogle ScholarPubMed
23.Bueno, P.R., Tararan, R., Parra, R., Ramirez, E., Ribeiro, M.A., Longo, E., and Varela, J.A.: A polaronic stacking fault defect model for CaCu3Ti4O12 material: An approach for the origin of the huge dielectric constant and semiconducting coexistent features. J. Phys. D: Appl. Phys. 42, 055404 (2009).CrossRefGoogle Scholar
24.Mu, C., Zhang, H., He, Y., Shen, J., and Liu, P.: Influence of DC bias on the dielectric relaxation in Fe-substituted CaCu3Ti4O12 ceramics: Grain boundary and surface effects. J. Phys. D: Appl. Phys. 42, 175410 (2009).CrossRefGoogle Scholar
25.Li, M., Feteira, A., Sinclair, D.C., and West, A.R.: Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88, 232903 (2006).CrossRefGoogle Scholar
26.Grubbs, R.K., Venturini, E.L., Clem, P.G., Richardson, J.J., Tuttle, B.A., and Samara, G.A.: Dielectric and magnetic properties of Fe- and Nb-doped CaCu3Ti4O12. Phys. Rev. B 72, 104111 (2005).CrossRefGoogle Scholar
27.Deng, G. and Muralt, P.: Annealing effects on electrical properties and defects of CaCu3Ti4O12 thin films deposited by pulsed laser deposition. Phys. Rev. B 81, 224111 (2010).CrossRefGoogle Scholar
28.Luo, X.J., Yang, C.P., Chen, S.S., Song, X.P., Wang, H., and Baerner, K.: The trap state relaxation related polarization in CaCu3Ti4O12. J. Appl. Phys. 108, 014107 (2010).CrossRefGoogle Scholar
29.Horyn, R., Bukowskas, E., and Sikora, A.: Nature of structure defects in rhombohedral series of La1−xAxMnO3+δ (A=Na, K). J. Alloys Compd. 346, 107 (2002).CrossRefGoogle Scholar
30.Koyama, Y., Tanaka, I., Adachi, H., Uchimoto, Y., and Wakihara, M.: First-principles calculations of formation energies and electronic structures of defects in oxygen-deficient LiMn2O4. J. Electrochem. Soc. 150(1), 63 (2003).CrossRefGoogle Scholar
31.Bärner, K., Raveau, B., and Troyanchuk, I.O.: Some elements of oxygen non-stoichiometry in manganites, in Recent Research Developments in Materials Science and Engineering (Transworld Research Network, Trivandrum, Kerala, 2003), pp. 185216.Google Scholar
32.Delugas, P., Alippi, P., and Raineri, V.: Native point defects in CaCu3Ti4O12. Mater. Sci. Eng. 8, 012015 (2010).Google Scholar
33.Bärner, K., Morsakov, W., Medvedeva, I.V., Deng, H., and Yang, C.P.: Space charge enhanced tunneling currents in manganites. Physica B 404, 11 (2009).CrossRefGoogle Scholar
34.Dimos, D., Schwartz, W.R., and Lockwood, S.J.: Control of leakage resistance in Pb(Zr, Ti)O3 thin films by donor doping. J. Am. Ceram. Soc. 77(11), 3000 (1994).CrossRefGoogle Scholar
35.Irvine, J.T.S., Sinclair, D.C., and West, A.R.: Electroceramics: Characterization by impedance spectroscopy. Adv. Mater. 2(3), 132 (1990).CrossRefGoogle Scholar
36.Nadeem, M., Akthar, M.J., and Haque, M.N.: Increase of grain boundary resistance with time by impedance spectroscopy in La0.5Ca0.5MnO3+δ at 77 K. Solid State Commun. 145, 263 (2008).CrossRefGoogle Scholar
37.Ragavendran, K., Morchshakov, V., Veluchamy, A., and Bärner, K.: Trap state spectroscopy in CMR manganites and spinel manganates using opto-impedance. J. Phys. Chem. Solids 69, 182 (2008).CrossRefGoogle Scholar
38.Krohns, S., Lu, J., Lunkenheimer, P., Brize, V., Autret-Lambert, C., Gervais, M., Gervais, F., Bouree, F., Porcher, F., and Loidl, A.: Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12. Eur. Phys. J. B 72, 173 (2009).CrossRefGoogle Scholar
39.Bärner, K., Deng, H., Wang, H., Annaorazov, M., Medvedeva, I.V., and Yang, C.P.: Trap state capture and reemission relaxation in ceramic La1– xCa xMnO3 with Ca-content x=0.51. Physica B 405, 999 (2009).CrossRefGoogle Scholar
40.Dattagupta, S.: Relaxation Phenomena in Condensed Matter Physics (Academic Press, New York, 1987), pp. 113f, 19.Google Scholar
41.Kittel, C.: Introduction to Solid State Physics, 5th Edition, edited by Oldenbourg, R. (John Wiley & Sons, Inc., New York, 1976), p. 333.Google Scholar