Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:16:10.096Z Has data issue: false hasContentIssue false

Correlation between macroscopic and microscopic stress fields: Application to the 3C–SiC/Si heteroepitaxy

Published online by Cambridge University Press:  27 November 2012

Massimo Camarda*
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi CNR-IMM, 95121 Catania, Italy
Ruggero Anzalone
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi CNR-IMM, 95121 Catania, Italy
Andrea Severino
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi CNR-IMM, 95121 Catania, Italy
Nicolò Piluso
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi CNR-IMM, 95121 Catania, Italy
Andrea Canino
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi CNR-IMM, 95121 Catania, Italy
Francesco La Via
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi CNR-IMM, 95121 Catania, Italy
Antonino La Magna
Affiliation:
Consiglio Nazionale delle Ricerche, Istituto di Microelettronica e Microsistemi CNR-IMM, 95121 Catania, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this article we develop an analytical theory that correlates the macroscopic curvature of stressed film/substrate systems with the microscopic in-plane and out-of-plane deflections of planar rotators. We have extended these stress-deflection relations in the case of nonlinear stress fields and validated the results with the aid of finite element simulations. We use this theory to study the heteroepitaxial growth of cubic silicon carbide on silicon (100) and discovered that, due to defects generated on the silicon substrate during the carbonization process, wafer curvature techniques alone may not enable determination of the stress field in the grown films either quantitatively or qualitatively.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. London, Ser. A 172, 82 (1909).Google Scholar
Klein, C.A.: How accurate are Stoney’s equations and recent modifications. J. Appl. Phys. 88, 5487 (2000).Google Scholar
Janssen, G.C.A.M., Abdalla, M.M., van Keulen, F., Pujada, B.R., and van Venrooy, B.: Celebrating the 100th anniversary of the Stoney’s equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517, 1858 (2009).Google Scholar
Freund, L.B.: The stress distribution and curvature of a general compositionally graded semiconductor layer. J. Cryst. Growth 132, 341 (1993).Google Scholar
Ikeharal, T., Zwijze, R.A.F., and Ikeda, K.: New method for an accurate determination of residual strain in polycrystalline silicon films by analyzing resonant frequencies of micromachined beams. J. Micromech. Microeng. 11, 55 (2001).Google Scholar
Sureh, S. and Giannakopoulos, A.E.: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46, 5755 (1998).Google Scholar
Welzel, U., Ligot, J., Lamparter, P., Vermeulen, A.C., and Mittemeijer, E.J.: Solidification microstructures: Recent developments and future directions. J. Appl. Crystallogr. 38, 1 (2005).Google Scholar
Anzalone, R., Camarda, M., Locke, C., Alquier, D., Severino, A., Italia, M., Rodilosso, D., Tringali, C., La Magna, A., Foti, G., Saddow, S.E., La Via, F., and D’Arrigo, G.: Low stress heteroepitaxial 3C-SiC films characterized by microstructure fabrication and finite elements analysis. J. Electrochem. Soc. 157, H438H442 (2010).Google Scholar
Guckel, H., Randazzo, T., and Burns, D.W.: A simple technique for the determination of mechanical strain in thin films with applications to polysilicon. J. Appl. Phys. 57, 1671 (1985).CrossRefGoogle Scholar
Anzalone, R., D’Arrigo, G., Camarda, M., Locke, C., Saddow, S.E., and La Via, F.: Advanced residual stress analysis and FEM simulation on heteroepitaxial 3C-SiC for MEMS application. J. Micromech. Syst. 20, 745 (2011).Google Scholar
Rohmfeld, S., Hundhausen, M., Ley, L., Zorman, C.A., and Mehregany, M.: Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy. J. Appl. Phys. 91, 1113 (2002).CrossRefGoogle Scholar
Drieenhuizen, B.P., Goosen, J.F.L., French, P.J., and Wolffenbuttel, R.F.: Comparison of techniques for measuring both compressive and tensile stress in thin films. Sens. Actuators, A 3738, 756765 (1993).CrossRefGoogle Scholar
Timoshenko, S. and Woinowsky-Krieger, S.: Theory of Plates and Shells (McGraw-Hill, New York, 1959).Google Scholar
Camarda, M., Anzalone, R., Severino, A., Piluso, N., La Magna, A., and La Via, F.: Complete determination of the local stress field in epitaxial thin films using single microstructure. Mater. Sci. Forum 679, 213 (2011).CrossRefGoogle Scholar
Chu, S.N.G.: Elastic bending of semiconductor wafer revisited and comments on Stoney’s equation. J. Electrochem. Soc. 145, 3621 (1998).Google Scholar
Piluso, N., Camarda, M., Anzalone, R., Severino, A., La Magna, A., D’arrigo, G., and La Via, F.: Raman stress characterization of heteroepitaxial 3C-SiC free standing structures. Mater. Sci. Forum 679, 141 (2011).Google Scholar
Huang, S. and Zhang, X.: Extension of the Stoney’s formula for film-substrate systems with gradient stress for MEMS applications. J. Micromech. Microeng. 16, 382389 (2006).Google Scholar
Salamon, N.J. and Masters, C.B.: Bifurcation in isotropic thin film/substrate plates. Int. J. Solids Struct. 32, 473 (1995).Google Scholar
Severino, A., Bongiorno, C., Piluso, N., Italia, M., Camarda, M., Mauceri, M., Condorelli, G., Di Stefano, M.A., Cafra, B., La Magna, A., and La Via, F.: High-quality 6 inch (111) 3C–SiC films grown on off-axis (111) Si substrates. Thin Solid films 518, s165 (2010).Google Scholar
Severino, A., Camarda, M., Scalese, S., Fiorenza, P., Di Franco, S., Bongiorno, C., La Magna, A., and La Via, F.: Preferential oxidation of stacking faults in epitaxial off-axis (111) 3C-SiC films. Appl. Phys. Lett. 95, 111905 (2009).Google Scholar
Zielinski, M., Portail, M., Roy, S., Chassagne, T., Moisson, C., Kret, S., and Cordier, Y.: Elaboration of (1 1 1) oriented 3C-SiC/Si layers for template application in nitride epitaxy. Mater. Sci. Eng., B 165, 914 (2009).Google Scholar
Siegle, H., Hoffmann, A., Eckey, L., Thomsen, C., Christen, J., Bertram, F., Schmidt, D., Rudloff, D., and Hiramatsu, K.: Vertical strain and doping gradients in thick GaN layers. Appl. Phys. Lett. 71, 2490 (1997).CrossRefGoogle Scholar
Anzalone, R., Camarda, M., Alquier, D., Italia, M., Severino, A., Piluso, N., La Magna, A., Foti, G., Locke, C., Saddow, S.E., Roncaglia, A., Mancarella, F., Poggi, A., D’Arrigo, G., and La Via, F.: Residual stress measurement and simulation of 3C-SiC single and poly crystal cantilevers. Mater. Sci. Forum 645, 865 (2010).CrossRefGoogle Scholar
Seok, S., Lee, B., and Chun, K.: A new electrical residual stress characterization using bent beam actuators. J. Micromech. Microeng. 12, 562 (2002).CrossRefGoogle Scholar
Anzalone, R., Camarda, M., D’Arrigo, G., Locke, C., Canino, A., Piluso, N., Severino, A., La Magna, A., Saddow, S.E., and La Via, F.: Advanced stress analysis by microstructures realization on high quality heteroepitaxial 3C-SiC for MEMS application. Mater. Sci. Forum 679, 133 (2011).Google Scholar
Zielinski, M., Ndiaye, S., Chassagne, T., Juillaguet, S., Lewandowska, R., Portail, M., Leycuras, A., and Camassel, J.: Strain and wafer curvature of 3C-SiC films on silicon: Influence of the growth conditions. Phys. Status Solidi A 204, 981 (2007).Google Scholar
Atkinson, A. and Jain, S.C.: Spatially resolved stress analysis using Raman spectroscopy. J. Raman Spectrosc. 30, 885 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
Severino, A., D’Arrigo, G., Bongiorno, C., Scalese, S., Foti, G., and La Via, F.: Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates. J. Appl. Phys. 102, 023518 (2007).Google Scholar
Sun, Y.. Miyasato, T., and Sonoda, N.: Outdiffusion of the excess carbon in SiC films into Si substrate during film growth. J. Appl. Phys. 84, 6451 (1998).Google Scholar
Bosi, M., Attolini, G., Watts, B.E., Rossi, F., Ferrari, C., Riesz, F., and Jiang, L.: Evaluation of curvature and stress in 3C-SiC grown on differently oriented Si substrates. J. Cryst. Growth 318, 401 (2011).Google Scholar
Chassagne, T., Ferro, G., Haas, H., Mank, H., Leycuras, A., Monteil, Y., Soares, F., Balloud, C., Arcade, Ph., Blanc, C., Peyre, H., Juillaguet, S., and Camassel, J.: Control of 3C-SiC/Si wafer bending by the "checker-board" carbonization method. Phys. Status Solidi A 202, 524 (2005).Google Scholar
Camassel, J.: State of the art of 3C-SiC/silicon on insulators. J. Vac. Sci. Technol, B 16, 1648 (1998).Google Scholar
Zgheib, C., McNeil, L.E., Kazan, M., Masri, P., Morales, F.M., Ambacher, O., and Pezoldt, J.: Raman studies of Ge-promoted stress modulation in 3C–SiC grown on Si(111). Appl. Phys. Lett. 87, 041905 (2005).Google Scholar
Chassagne, T., Ferro, G., Gourbeyre, C., Le Berre, M., Barbier, D., and Monteil, Y.: Thermally induced surface reorganization of 3C-SiC(111) epilayers grown on silicon substrates. Mater. Sci. Forum 353, 155 (2001).Google Scholar