Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T03:41:37.422Z Has data issue: false hasContentIssue false

Correlation between energy transfers and solid state reactions induced by mechanical alloying on the Mo33Si66 system

Published online by Cambridge University Press:  31 January 2011

L. Liu
Affiliation:
ENEA-INN-NUMA, CRE-CASACCIA, Via Anguillarese 301, Rome, Italy
M. Magini
Affiliation:
ENEA-INN-NUMA, CRE-CASACCIA, Via Anguillarese 301, Rome, Italy
Get access

Abstract

Phase transformations of the Mo33Si66 powder mixture under different milling conditions have been systematically investigated by x-ray diffraction, and scanning and transmission electron microscopy. The effect of the milling conditions on the Mo/Si solid state reactions (SSR) has been examined in detail. The energy transfer from the milling tools to the powder under processing has been quantified by an already assessed collision model. It has been found that the higher energetic input favors the formation of the room temperature stable phase αMoSi2, while the lower energetic input promotes the formation of the metastable phase βMoSi2. In addition, if the energy transfer is high enough, the Mo/Si reaction proceeds in a form of self-propagating high temperature synthesis (SHS). Thermodynamics and kinetics aspects related to the different SSR's are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Benjamin, J. S., Metall. Trans. 1, 2943 (1970).CrossRefGoogle Scholar
2.Koch, C. C., Cavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
3.Politis, C. and Johnson, W. L., J. Appl. Phys. 60, 1147 (1986).CrossRefGoogle Scholar
4.Koch, C. C., Ann. Rev. Mater. Sci. 19, 121 (1989).CrossRefGoogle Scholar
5.Fechet, H. L., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
6.Morris, D. G. and Morris, M. A., Mater. Sci. Eng. A134, 1481 (1991).Google Scholar
7.Echert, J., Schulz, L., and Urban, K., Z. Metallkd. 81, 862 (1990).Google Scholar
8.Hellstern, H., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4, 1292 (1989).CrossRefGoogle Scholar
9.Liu, L. and Dong, Y. D., Nano-structured Mater. 2, 463 (1993).CrossRefGoogle Scholar
10.Bokhonov, B., Ivanov, E., and Boldyrev, V., J. Alloys. Comp. 199, 125 (1991).CrossRefGoogle Scholar
11.Burgio, N., Iasonna, A., Magini, M., Martelli, S., and Padella, F., Nuovo Cimento 13, 459 (1991).CrossRefGoogle Scholar
12.Padella, F., Paradiso, E., Burgio, N., Magini, M., Martelli, S., Guo, W., and Iasonna, A., J. Less-Comm. Metals 175, 79 (1991).CrossRefGoogle Scholar
13.Magini, M. and Iasonna, A., Mater. Trans. JIM 36, 123 (1995).CrossRefGoogle Scholar
14.Shobu, K., Tsuji, K., and Watunabe, T., Mater. Sci. Forum 34, 675 (1988).Google Scholar
15.Iwamoto, N. and Uesaka, S., Mater. Sci. Forum 88–90, 763 (1992).CrossRefGoogle Scholar
16.Liu, L., Padella, F., Guo, W., and Magini, M., Acta Metall. Mater. 10, 3755 (1995).CrossRefGoogle Scholar
17.Schwarz, R. B., Srinivasan, S. R., Petrovic, J. J., and Maggiore, C. J., Mater. Sci. Eng. A155, 75 (1992).CrossRefGoogle Scholar
18.Jayashanker, S. and Kaufman, J., J. Mater. Res. 8, 1428 (1993).CrossRefGoogle Scholar
19.Ma, E., Pagan, J., Granford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
20.Patankar, S. N., Xiao, S-Q., Lewandowski, J. J., and Heuer, A. H., J. Mater. Res. 8, 1311 (1993).CrossRefGoogle Scholar
21.Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity (McGraw-Hill, New York, 1970).Google Scholar
22.Magini, M., Collela, C., Guo, W., Iasonna, A., Martelli, S., and Padella, F., Int. J. Mechanochem. Mech. Alloying 1, 14 (1994).Google Scholar
23.Heron, A. J. and Schaffer, G. B., J. Mater. Synth. Proc. 2, 335 (1995).Google Scholar
24.Doland, C. M. and Nemanich, R. J., J. Mater. Res. 5, 2854 (1990).CrossRefGoogle Scholar
25.McCormick, P. G., Huang, H., Dallimore, M. P., Ding, J., and Pan, J., in Mechanical Alloying for Structural Applications, edited by Debarbadillo, J. J., Frose, F. H., and Schwarz, R. B. (ASM INTERNATIONAL, Materials Park, OH, 1993), p. 45.Google Scholar
26.Le Brun, P., Froyen, L., and Delaey, L., Mater. Sci. Eng. A161, 75 (1993).CrossRefGoogle Scholar
27.Liu, Z. G., Guo, J. T., Ye, L. L., Li, G. S., and Hu, Z. Q., Appl. Phys. Lett. 65, 2666 (1992).CrossRefGoogle Scholar
28.Kajuch, J., Rigney, J. D., and Lewandowski, J. J., Mater. Sci. Eng. A155, 59 (1992).CrossRefGoogle Scholar
29.Yi, H. C. and Moore, J. J., J. Mater. Sci. 25, 1159 (1990).CrossRefGoogle Scholar
30.Maurice, D. R. and Courtney, T. H., Metall. Trans. 21A, 289 (1990).CrossRefGoogle Scholar
31.Thadhani, N. N., Prog. Mater. Sci. 37, 117 (1993).CrossRefGoogle Scholar
32.Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar