Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T03:44:51.426Z Has data issue: false hasContentIssue false

Copper–lithium ion exchange in LiNbO3

Published online by Cambridge University Press:  31 January 2011

F. Caccavale
Affiliation:
Instituto Nazionale Fisica della Materia, Università di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova, Italy
C. Sada
Affiliation:
Instituto Nazionale Fisica della Materia, Università di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova, Italy
F. Segato
Affiliation:
Instituto Nazionale Fisica della Materia, Università di Padova, Dipartimento di Fisica, via Marzolo 8, 35131 Padova, Italy
L. D. Bogomolova
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
N. A. Krasil'nikova
Affiliation:
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia
Yu. N. Korkishko
Affiliation:
Department of Materials and Technology of Solid State Electronics, Moscow Institute of Electronic Technology, 103498, Moscow-Zelenograd, Russia
V. A. Fedorov
Affiliation:
Department of Materials and Technology of Solid State Electronics, Moscow Institute of Electronic Technology, 103498, Moscow-Zelenograd, Russia
T. V. Morozova
Affiliation:
Department of Materials and Technology of Solid State Electronics, Moscow Institute of Electronic Technology, 103498, Moscow-Zelenograd, Russia
Get access

Abstract

Copper-doped LiNbO3 waveguides were prepared by Cu–Li ion-exchange process. Compositional, structural, and optical analyses were performed by secondary ion mass spectrometry, x-ray diffraction, and m-line spectroscopy, respectively. The chemical state of Cu2+ ions was studied by electron paramagnetic resonance, and the results were correlated with structural modification of the LiNbO3 matrix. Copper incorporation in the crystal took place under different regimes, and it induced a lattice rearrangement with the formation of new crystalline phases. Cu2+ ions were surrounded by tetragonally compressed octahedra with rhombic distortions. Cu:LiNbO3 optical waveguides were formed supporting two optical modes.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Caccavale, F., Sada, C., Segato, F., and Cavuoti, F., Appl. Surf. Sci. 150, 195 (1999).CrossRefGoogle Scholar
2.Caccavale, F., Morbiato, A., Natali, M., Sada, C. and Segato, F., J. Appl. Phys. 87, (2000).Google Scholar
3.Bobrov, Yu.A., Gan'shin, V.A., Ivanov, V.Sh., Korkishko, Yu.N., and Morozova, T.V., Phys. Status Solidi 123, 317 (1991).CrossRefGoogle Scholar
4.Gan'shin, V.A., Ivanov, V.Sh., Korkishko, Yu.N., and Petrova, V.Z., Sov. Phys. Tech. Phys. 31, 794 (1986).Google Scholar
5.Sada, C., Borsella, E., Caccavale, F., Gonella, F., Segato, F., Korkishko, Yu.N., Fedorov, V.A., Morozova, T.V., Battaglin, G., and Polloni, R., Appl. Phys. Lett. 72, 3431 (1998).CrossRefGoogle Scholar
6.Caccavale, F., Sada, C., Segato, F., Korkishko, Yu.N., Fedorov, V.A., and Morozova, T.V., J. Non-Cryst. Solids 245, 135 (1999).CrossRefGoogle Scholar
7.Kostritskii, S.M. and Kolesnikov, O.M., J. Opt. Soc. Am. B 11, 17 (1994).CrossRefGoogle Scholar
8.Ivanov, V.Sh., Gan'shin, V.A., and Korkishko, Yu.N., Vacuum 43, 317 (1992).CrossRefGoogle Scholar
9.Gonella, F., Quaranta, A., Sambo, A., Caccavale, F., and Mansour, I., Opt. Mater. 5, 321 (1996).Google Scholar
10.Santana, R.C., Terrible, M.C., Hernandes, A.C., Andretta, M.R.B, and Barberis, G.E., Solid State Commun. 103, 61 (1997).Google Scholar
11.Nogami, M., Abe, Y., and Nakamura, A., J. Mater. Res. 10, 2648 (1995).Google Scholar
12.Cable, M. and Xiang, Z., Phys. Chem. Glasses 33, 154 (1992).Google Scholar
13.Abragam, A. and Bleaney, B., in Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, United Kingdom, 1970).Google Scholar
14.Corradi, G., Sothe, H., Spaeth, J-M., and Polgar, K., Ferroelectrics 125, 295 (1992).CrossRefGoogle Scholar
15.Weiss, R.S. and Gaylord, T.K., Appl. Phys. A 37, 191 (1985).CrossRefGoogle Scholar
16.Gonella, F., Caccavale, F., Bogomolova, L.D., D'Acapito, F., and Quaranta, A., J. Appl. Phys. 83, 1200 (1998).Google Scholar