Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T11:16:40.187Z Has data issue: false hasContentIssue false

Copper vanadates as candidate materials for phase change optical memory

Published online by Cambridge University Press:  31 January 2011

D.P. Birnie III
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
J.D. Weinberg
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
D.G. Swanson
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

Several copper vanadium oxide melts were tested for possible application as the active medium in phase-change optical data storage devices. These materials were melted in the bulk and then quenched. Their phase development was characterized to help determine their applicability to optical data storage. It was found that they satisfy many of the criteria necessary for successful phase-change data storage; further studies of their behavior in thin film geometry would be warranted.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Burke, J. J. and Ryan, B., Byte Magazine, 259 (October 1989).Google Scholar
2.Chen, M. and Rubin, K. A., SPIE 1078, 150 (1989).Google Scholar
3.Terao, M., Miyauchi, Y., Andoo, K., Yasuoka, H., and Tamura, R., SPIE 1078, 2 (1989).Google Scholar
4.Gravesteijn, D. J., Appl. Opt. 27, 736 (1988).CrossRefGoogle Scholar
5.Terao, M., Horigome, S., Shigematsu, K., Miyauchi, Y., and Nakazawa, M., SPIE 382, 276 (1983).Google Scholar
6.Barton, R., Davis, C. R., Rubin, K., and Lim, G., Appl. Phys. Lett. 48, 1255 (1986).CrossRefGoogle Scholar
7.Heyman, P. M., SPIE 420, 162 (1983).Google Scholar
8.Gravesteijn, D. J., van Tongeren, H. M., Sens, M., Bertens, T., and van der Poel, C. J., Appl. Opt. 26, 4772 (1987).CrossRefGoogle Scholar
9.Ohta, T., Uchida, M., Yoshioka, K., Inoue, K., Akiyama, T., Furukawa, S., Kotera, K., and Nakamura, S., SPIE 1078, 27 (1989).Google Scholar
10.Fuxi, G. and Hao, W., SPIE 529, 51 (1985).Google Scholar
11.Maeda, Y., Andoh, H., Ikuta, I., and Minemura, H., J. Appl. Phys. 64, 1715 (1988).CrossRefGoogle Scholar
12.Rubin, K. A., Barton, R. W., Chen, M., Jipson, V. B., and Rugar, D., Appl. Phys. Lett. 50, 1488 (1987).CrossRefGoogle Scholar
13.Smith, T. W., Johnson, G. E., Ward, A. T., and Luca, D. J., SPIE 329, 228 (1982).Google Scholar
14.Duran, A. and Navarro, J. M. Fernandez, Phys. and Chem. Glasses 26, 126 (1985).Google Scholar
15.Koffyberg, F. P. and Koziol, N. J., J. Appl. Phys. 47, 4701 (1976).CrossRefGoogle Scholar
16.Fleury, P., C. R. Acad. Sci. Cer. C 263 (22), 1375 (1966) as presented in Phase Diagrams for Ceramists, 1975 Supplement, edited by E. M. Levin and H. F. McMurdie, Am. Ceram. Soc, Westerville, OH; figure 4326 (1975).Google Scholar
17.Chen, M., Rubin, K. A., and Barton, R. W., Appl. Phys. Lett. 49, 502 (1986).CrossRefGoogle Scholar
18.Goto, Y., Utsumi, K., Ushioda, A., Tsugawa, I., and Koshino, N., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 251.Google Scholar
19.Joint Committee on Powder Diffraction Standards, American Society for Testing and Materials, Philadelphia, PA (1966).Google Scholar