Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T12:06:57.789Z Has data issue: false hasContentIssue false

Conversion of waste plastic into ordered mesoporous carbon for electrochemical applications

Published online by Cambridge University Press:  18 February 2019

Kehan Liang
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Lei Liu
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Wei Wang
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Yifeng Yu
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Yuying Wang
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Lili Zhang
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Chang Ma
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Aibing Chen*
Affiliation:
College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The excessive use of plastic, especially polystyrene (PS), has caused serious environmental pollution. The efficient utilization of plastics and the conversion of plastics into value-added carbon materials are the concerns of researchers. Herein, we propose novel “pyrolysis–deposition” method to convert one popular plastic substance, PS, into ordered mesoporous carbons (OMCs). During the synthesis process, PS is pyrolyzed into small organic gases under high temperature, which is then adsorbed through capillary adsorption into the mesoporous of SBA-15 in the presence of catalyst. The obtained OMCs have high specific surface area, uniform pore size, and ordered pore structure. The OMCs exhibit specific capacitance of 118 F/g at a current density of 0.2 A/g and electrochemical stability of 87.2% at a current density of 2 A/g after 5000 cycles. The pyrolysis–deposition strategy provides a new idea to convert waste plastics into high-performance carbon materials for electrochemical applications.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, C.Q., Wang, H., Gu, G.H., Lin, Q.Q., Zhang, L.L., Huang, L.L., and Zhao, J.Y.: Ammonia modification for flotation separation of polycarbonate and polystyrene waste plastics. Waste Manag. 51, 13 (2016).CrossRefGoogle ScholarPubMed
Zhang, Q.B., Liu, Z.C., Zhao, B.T., Cheng, Y., Zhang, L., Wu, H.H., Wang, M.S., Dai, S.G., Zhang, K.L., Ding, D., Wu, Y.P., and Liu, M.L.: Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater. 16, 632 (2019).CrossRefGoogle Scholar
Zhang, Q.B., Chen, H.X., Luo, L.L., Zhao, B.T., Luo, H., Xiang, H., Wang, J.W., Wang, C.M., Yang, Y., Zhu, T., and Liu, M.L.: Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance of lithium-ion batteries. Energy Environ. Sci. 11, 669 (2018).CrossRefGoogle Scholar
Kwon, B.G., Koizumi, K., Chung, S.Y., Kodera, Y., Kim, J., and Saido, K.: Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J. Hazard. Mater. 300, 359 (2015).CrossRefGoogle ScholarPubMed
Zheng, Z.M., Wu, H.H., Chen, H.X., Cheng, Y., Zhang, Q.B., Xie, Q.S., Wang, L.S., Zhang, K.L., Wang, M.S., Peng, D.L., and Zeng, X.C.: Fabrication and understanding of Cu3Si–Si@carbon@graphene nanocomposites as high-performance anode for lithium-ion batteries. Nanoscale 10, 22203 (2018).CrossRefGoogle ScholarPubMed
Miandad, R., Barakat, M.A., Aburiazaiza, A.S., Rehan, M., Ismail, I.M.I., and Nizami, A.S.: Effect of plastic waste types on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 119, 239 (2017).CrossRefGoogle Scholar
Miandad, R., Nizami, A.S., Rehan, M., Barakat, M.A., Khan, M.I., Mustafa, A., Ismail, I.M.I., and Murphy, J.D.: Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Manag. 58, 250 (2016).CrossRefGoogle ScholarPubMed
Fu, X.T., Ding, M.M., Tang, C.Y., Li, B., Zhao, Z.Y., Chen, D.Q., Zhang, Q., Fu, Q., Long, H., and Tan, T.W.: Toughening of recycled polystyrene used for TV backset. J. Appl. Polym. Sci. 109, 3725 (2010).CrossRefGoogle Scholar
Miandad, R., Rehan, M., Nizami, A-S., Barakat, M.A. El-Fetouh, and Ismail, I.M.: The energy and value-added products from pyrolysis of waste plastics. In Recycling of Solid Waste for Biofuels and Bio-chemicals, Karthikeyan, O., Heimann, K., and Muthu, S., eds. (Springer, Singapore, 2016); pp. 333355.CrossRefGoogle Scholar
Li, Y., Chen, J.F., Xu, Q., He, L.H., and Chen, Z.M.: Controllable route to solid and hollow monodisperse carbon nanospheres. J. Phys. Chem. C 113, 10085 (2009).CrossRefGoogle Scholar
Wu, Z.J., Kong, L.J., Hu, H., Tian, S.H., and Xiong, Y.: Adsorption performance of hollow spherical sludge carbon prepared from sewage sludge and polystyrene foam wastes. ACS Sustainable Chem. Eng. 3, 552 (2015).CrossRefGoogle Scholar
Chen, A.B., Li, Y.T., Yu, Y.F., Li, Y.Q., Xia, K.C., Wang, Y.Y., Li, S.H., and Zhang, L.S.: Synthesis of hollow mesoporous carbon spheres via “dissolution-capture” method for effective phenol adsorption. Carbon 103, 157 (2016).CrossRefGoogle Scholar
Shi, Q., Zhang, R.Y., Lv, Y.Y., Deng, Y.H., Elzatahrya, A.A., and Zhao, D.Y.: Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon 84, 335 (2015).CrossRefGoogle Scholar
You, C.H., Liao, S.J., Qiao, X.C., Zeng, X.Y., Liu, F.F., Zheng, R.P., Song, H.Y., Zeng, J.H., and Li, Y.W.: Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. J. Mater. Chem. A 2, 12240 (2014).CrossRefGoogle Scholar
Zheng, J., Wang, K., Liang, Y.R., Zhu, F., Wu, D.C., and Ouyang, G.F.: Applications of ordered mesoporous carbon in solid phase microextraction for fast mass transfer and high sensitivity. Chem. Commun. 52, 6829 (2016).CrossRefGoogle Scholar
Goscianska, J., Marciniak, M., and Pietrzak, R.: Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption. Chem. Eng. J. 247, 258 (2014).CrossRefGoogle Scholar
Zhai, Y., Dou, Y., Zhao, D., Fulvio, P.F., Mayes, R.T., and Dai, S.: Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828 (2011).CrossRefGoogle ScholarPubMed
Zhou, J., Bao, L., Wu, S.J., Yang, W., and Wang, H.: Nitrogen-doped ordered mesoporous carbon using task-specific ionic liquid as a dopant for high-performance supercapacitors. J. Mater. Res. 32, 404 (2017).CrossRefGoogle Scholar
Zhang, L.L. and Zhao, X.S.: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle ScholarPubMed
Lim, E., Jo, C., and Lee, J.: Applications of ordered mesoporous carbon in solid phase microextraction for fast mass transfer and high sensitivity. Nanoscale 8, 7827 (2016).CrossRefGoogle Scholar
Luo, W., Zhao, T., Li, Y.H., Wei, J., Xu, P.C., Li, X.X., Wang, Y.W., Zhang, W.Q., Elzatahry, A.A., Alghamdi, A., Deng, Y.H., Wang, L.J., Jiang, W., Liu, Y., Kong, B., and Zhao, D.Y.: A micelle fusion–aggregation assembly approach to mesoporous carbon materials with rich active sites for ultra-sensitive ammonia sensing. J. Am. Chem. Soc. 138, 12586 (2016).CrossRefGoogle Scholar
Li, S.J., Pasc, A., Fierro, V., and Celzard, A.: Hollow carbon spheres, synthesis and applications—A review. J. Mater. Chem. A 4, 12686 (2016).CrossRefGoogle Scholar
Chu, X.F., Wang, H., Chi, Y.D., Wang, C., Lei, L., Zhang, W.T., and Yang, X.T.: Hard-template-engaged formation of Co2V2O7 hollow prisms for lithium ion batteries. RSC Adv. 8, 2072 (2018).CrossRefGoogle Scholar
Wang, G.X., Wang, R.C., Liu, L., Zhang, H.L., Du, J., Zhang, Y.T., Liu, M., Liang, K.H., and Chen, A.B.: Synthesis of hollow mesoporous carbon spheres via Friedel-Crafts reaction strategy for supercapacitor. Mater. Lett. 197, 71 (2017).CrossRefGoogle Scholar
Xia, Y.D. and Mokaya, R.: Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem. Mater. 17, 1553 (2005).CrossRefGoogle Scholar
Liu, L., Zhang, H.L., Wang, G.X., Du, J., Zhang, Y.T., Fu, X.Y., and Chen, A.B.: Synthesis of mesoporous carbon nanospheres via ‘‘pyrolysis-deposition’’ strategy for CO2 capture. J. Mater. Sci. 52, 9640 (2017).CrossRefGoogle Scholar
Gong, J., Liu, J., Che, X.C., Wen, X., Jiang, Z.W., Mijowska, E., Wang, Y.H., and Tang, T.: Synthesis, characterization and growth mechanism of mesoporous hollow carbon nanospheres by catalytic carbonization of polystyrene. Microporous Mesoporous Mater. 176, 31 (2013).CrossRefGoogle Scholar
Maetz, A., Delmotte, L., Moussa, G., Denzer, J., Knopf, S., and Ghimbeu, C.M.: Facile synthesis of nitrogen-doped polymer and carbon porous spheres. Green Chem. 19, 2266 (2017).CrossRefGoogle Scholar
Liu, X., Li, L., Song, X.Y., Liu, F.S., Yu, S.T., and Ge, X.P.: Degradation of polystyrene using base modified mesoporous molecular sieves K2O/BaO-SBA-15 as catalysts. Catal. Lett. 146, 1 (2016).CrossRefGoogle Scholar
Zheng, Z.M., Zao, Y., Zhang, Q.B., Cheng, Y., Chen, H.X., Zhang, K.L., Wang, M.S., and Peng, D.L.: Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries. Chem. Eng. J. 347, 563 (2018).CrossRefGoogle Scholar
Suryavanshi, U., Baskar, A.V., Balasubramanian, V.V., Al-Deyab, S.S., Al-Enizi, A., and Vinu, A.: Growth and physico-chemical properties of interconnected carbon nanotubes in FeSBA-15 mesoporous molecular sieves. Arabian J. Chem. 9, 171 (2016).CrossRefGoogle Scholar
Huang, H.J., Wang, Q., Wei, Q.L., and Huang, Y.M.: Nitrogen doped mesoporous carbon derived from copolymer and supporting cobalt oxide for oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 40, 6072 (2015).CrossRefGoogle Scholar
Mane, G.P., Talapaneni, S.N., Anand, C., Varghese, S., Iwai, H., Ji, Q.M., Ariga, K., Mori, T., and Vinu, A.: Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid. Adv. Funct. Mater. 22, 3596 (2012).CrossRefGoogle Scholar
Chen, A.B., Yu, Y.F., Wang, R.J., Yu, Y.H., Zang, W.W., Tang, P., and Ma, D.: Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale 7, 14684 (2015).CrossRefGoogle ScholarPubMed
Ragavan, R. and Pandurangan, A.: Facile synthesis and supercapacitor performances of nitrogen doped CNT grown over mesoporous Fe/SBA-15 catalyst. New J. Chem. 41, 11591 (2017).CrossRefGoogle Scholar
Martín, A., Morales, G., Martínez, F., Grieken, R.V., Cao, L., and Kruk, M.: Acid hybrid catalysts from poly(styrenesulfonic acid) grafted onto ultra-large-pore SBA-15 silica using atom transfer radical polymerization. J. Mater. Chem. 20, 8026 (2010).CrossRefGoogle Scholar
Wan, H.H., Liu, L., Li, C.M., Xue, X.Y., and Liang, X.M.: Facile synthesis of mesoporous SBA-15 silica spheres and its application for high-performance liquid chromatography. J. Colloid Interface Sci. 337, 420 (2009).CrossRefGoogle ScholarPubMed
Martins, A.R., Cunha, I.T., Oliveira, A.A.S., and Moura, F.C.C.: Highly ordered spherical SBA-15 catalysts for the removal of contaminants from the oil industry. Chem. Eng. J. 318, 189 (2017).CrossRefGoogle Scholar
Cakiryilmaz, N., Arbag, H., Oktar, N., Dogu, G., and Dogu, T.: Effect of W incorporation on the product distribution in steam reforming of bio-oil derived acetic acid over Ni based Zr-SBA-15 catalyst. Int. J. Hydrogen Energy 43, 3629 (2018).CrossRefGoogle Scholar
Cakici, M., Reddy, K.R., and Alonso-Marroquin, F.: Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151 (2017).CrossRefGoogle Scholar
Rose, A., Prasad, K.G., Sakthivel, T., Gunasekaran, V., Maiyalagan, T., and Vijayakumar, T.: Electrochemical analysis of graphene oxide/polyaniline/polyvinylalcohol composite nanofibers for supercapacitor applications. Appl. Surf. Sci. 449, 551 (2018).CrossRefGoogle Scholar
Liu, X.H., Zhou, L., Zhao, Y.Q., Bian, L., Feng, X.T., and Pu, Q.S.: Hollow spherical nitrogen-rich porous carbon shells obtained from porous organic framework for the supercapacitor. ACS Appl. Mater. Interfaces 5, 10280 (2013).CrossRefGoogle ScholarPubMed
Cheng, P., Li, T., Yu, H., Zhi, L., Liu, Z., and Lei, Z.: Biomass-derived carbon fiber aerogel as binder-free electrode for high-rate supercapacitor. J. Phys. Chem. C 120, 2079 (2016).CrossRefGoogle Scholar
Chen, A.B., Xia, K.C., Zhang, L.S., Yu, Y.F., Li, Y.T., Sun, H.X., Wang, Y.Y., Li, Y.Q., and Li, S.H.: Fabrication of nitrogen-doped hollow mesoporous spherical carbon capsules for supercapacitors. Langmuir 32, 8934 (2016).CrossRefGoogle ScholarPubMed
Chen, X.Y., Chen, C., Zhang, Z.J., Dong, H.X., Xiao, D., and Jian, W.L.: Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 230, 50 (2013).CrossRefGoogle Scholar