Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T13:06:44.983Z Has data issue: false hasContentIssue false

Controlled synthesis of ytterbium ion and erbium ion codoped gadolinium oxyfluoride hollow nanosphere with upconversion luminescence property

Published online by Cambridge University Press:  06 March 2013

Yu Wang*
Affiliation:
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
Tong Liu
Affiliation:
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
Xuesi Wang
Affiliation:
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
Hongwei Song*
Affiliation:
State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Uniform ytterbium ion and erbium ion codoped gadolinium oxyfluoride (GdOF: Yb3+, Er3+) hollow nanospheres of 100-nm diameter were synthesized via the nanoscale Kirkendall approach, using colloidal nanospheres of ytterbium ion and erbium ion codoped gadolinium hydroxide [Gd(OH)3: Yb3+, Er3+] as sacrificial templates and titanium tetrafluoride as fluorine source under hydrothermal condition. The shell thickness of the as-synthesized GdOF: Yb3+, Er3+ hollow nanospheres can be facilely tuned from 31 to 13 nm by controlling reaction temperature and reaction time. The upconversion emission color could be adjusted from red to yellow to green when the host lattices variedfrom gadolinium (III) oxide to gadolinium oxyfluoride to gadolinium fluoride. Furthermore, the formation mechanism of the hollow GdOF: Yb3+, Er3+ nanospheres was found to depend on the fluorine source.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hu, J., Odom, T.W., and Lieber, C.M.: Chemistry and physics in one-dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).CrossRefGoogle Scholar
Goldberger, J., He, R., Lee, S., Zhang, Y., Yan, H., Choi, H., and Yang, P.: Single crystal gallium nitride nanotubes. Nature 422, 599 (2003).CrossRefGoogle ScholarPubMed
Zhang, J.T., Tang, Y., Lee, K., and Ouyang, M.: Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327, 1634 (2010).CrossRefGoogle ScholarPubMed
Yin, Y., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., and Alivisatos, A.P.: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711 (2004).CrossRefGoogle ScholarPubMed
Park, J., An, K., Hwang, Y., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., and Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 (2004).CrossRefGoogle ScholarPubMed
Yin, M., Gu, Y., Kuskovsky, I.L., Andelman, T., Zhu, Y., Neumark, G.F., and O’Brien, S.J.: Zinc oxide quantum rods. J. Am. Chem. Soc. 126, 6206 (2004).CrossRefGoogle ScholarPubMed
Shi, F., Tse, M.K., Pohl, M.M., Brückner, A., Zhang, M., and Beller, M.: Tuning catalytic activity between homogeneous and heterogeneous catalysis: Improved activity and selectivity of free nano-Fe2O3 in selective oxidations. Angew. Chem. Int. Ed. 46, 8866 (2007).CrossRefGoogle ScholarPubMed
Li, Z.X., Li, L.L., Zhou, H.P., Yuan, Q., Chen, C., Sun, L.D., and Yan, C.H.: Colour modification action of an upconversion photonic crystal. Chem. Commun. 43, 6616 (2009).CrossRefGoogle Scholar
Lu, X.M., Tuan, H.Y., Chen, J.Y., Li, Z.Y., Korgel, B.A., and Xia, Y.N.: Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J. Am. Chem. Soc. 129, 1733 (2007).CrossRefGoogle Scholar
Liu, B. and Zeng, H.C.: Fabrication of ZnO “Dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 126, 16744 (2004).CrossRefGoogle Scholar
Jia, C.J., Sun, L.D., Yan, Z.G., You, L.P., Luo, F., Han, X.D., Pang, Y.C., Zhang, Z., and Yan, C.H.: Single-crystalline iron oxide nanotubes. Angew. Chem. Int. Ed. 44, 4328 (2005).CrossRefGoogle ScholarPubMed
Wang, X., Zhuang, J., Peng, Q., and Li, Y.D.: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).CrossRefGoogle ScholarPubMed
Li, X.H., Zhang, D.H., and Chen, J.S.: Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J. Am. Chem. Soc. 128, 8382 (2006).CrossRefGoogle ScholarPubMed
Wang, G.F., Peng, Q., and Li, Y.D.: Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200 (2009).CrossRefGoogle Scholar
Hu, L.H., Peng, Q., and Li, Y.D.: Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 130, 16136 (2008).CrossRefGoogle ScholarPubMed
Ai, K.L., Zhang, B.H., and Lu, L.H.: Europium-based fluorescence nanoparticle sensor for rapid and ultrasensitive detection of an anthrax biomarker. Angew. Chem. Int. Ed. 48, 304 (2009).CrossRefGoogle ScholarPubMed
Zeng, H. and Sun, S.H.: Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 18, 391 (2008).CrossRefGoogle Scholar
Li, C.X., Hou, Z.Y., Zhang, C.M., Yang, P.P., Li, G.G., Xu, Z.H., Fan, Y., and Lin, J.: Controlled synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ ion-doped YPO4 nano-/microstructures with tunable luminescent colors. Chem. Mater. 21, 4598 (2009).CrossRefGoogle Scholar
Jia, G., You, H.P., Yang, M., Zhang, L.H., and Zhang, H.J.: Uniform lanthanide orthoborates LnBO3 (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates: General synthesis and luminescence properties. J. Phys. Chem. C 113, 16638 (2009).CrossRefGoogle Scholar
Yada, M., Mihara, M., Mouri, S., Kuroki, M., and Kijima, T.: Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies. Adv. Mater. 14, 309 (2002).3.0.CO;2-Q>CrossRefGoogle Scholar
Cao, F., Shi, W.D., Zhao, L.J., Song, S.Y., Yang, J.H., Lei, Y.Q., and Zhang, H.J.: Hydrothermal synthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostruetures. J. Phys. Chem. C 112, 17095 (2008).CrossRefGoogle Scholar
Binnemans, K.: Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283 (2009).CrossRefGoogle ScholarPubMed
Nakashima, T. and Kimizuka, N.: Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J. Am. Chem. Soc. 125, 6386 (2003).CrossRefGoogle ScholarPubMed
Peng, Q., Dong, Y., and Li, Y.D.: ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed. 42, 3027 (2003).CrossRefGoogle ScholarPubMed
Yang, H.G. and Zeng, H.C.: Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Angew. Chem. Int. Ed. 43, 5206 (2004).CrossRefGoogle ScholarPubMed
Kim, S.W., Kim, M., Lee, W.Y., and Hyeon, T.: Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. J. Am. Chem. Soc. 124, 7642 (2002).CrossRefGoogle Scholar
Sun, X.M. and Li, Y.D.: Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 43, 3827 (2004).CrossRefGoogle ScholarPubMed
Sun, Y. and Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).CrossRefGoogle ScholarPubMed
Ikeda, S., Ishino, S., Harada, T., Okamoto, N., Sakata, T., Mori, H., Kuwabata, S., Torimoto, T., and Matsumura, M.: Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew. Chem. Int. Ed. 45, 7063 (2006).CrossRefGoogle Scholar
Xu, X.L. and Asher, S.A.: Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals. J. Am. Chem. Soc. 126, 7940 (2004).CrossRefGoogle ScholarPubMed
Lou, X.W., Wong, Y., Yuan, C., Lee, J.Y., and Archer, L.A.: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).CrossRefGoogle Scholar
Dong, W.F., Kishimura, A., Anraku, Y., and Kataoka, K.: Monodispersed polymeric nanocapsules: Spontaneous evolution and morphology transition from reducible hetero-PEG PICmicelles by controlled degradation. J. Am. Chem. Soc. 131, 3804 (2009).CrossRefGoogle ScholarPubMed
Son, D.H., Hughes, S., Yin, Y.D., and Alivisatos, A.P.: Cation exchange reactions in ionic nanocrystals. Science 306, 1009 (2004).CrossRefGoogle ScholarPubMed
Huang, C.C., Liu, T.Y., Su, C.H., Lo, Y.W., Chen, J.R., and Yeh, C.S.: Superparamagnetic hollow and paramagnetic porous Gd2O3 particles. Chem. Mater. 20, 3840 (2008).CrossRefGoogle Scholar
Zhang, C.M., Li, C.X., Peng, C., Chai, R.T., Huang, S.S., Yang, D.M., Cheng, Z.Y., and Lin, J.: Facile and controllable synthesis of monodisperse CaF2 and CaF2:Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers. Chem. Eur. J. 16, 5672 (2010).CrossRefGoogle ScholarPubMed
Abel, K.A., Boyer, J.C., and Van Veggel, F.C.J.M.: Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J. Am. Chem. Soc. 131, 14644 (2009).CrossRefGoogle Scholar
Schafer, H., Ptacek, P., Eickmeier, H., and Haase, M.: Synthesis of hexagonal Yb3+, Er3+-doped NaYF4 nanocrystals at low temperature. Adv. Funct. Mater. 19, 3091 (2009).CrossRefGoogle Scholar
Li, Y.P., Zhang, J.H., Zhang, X., Luo, Y.S., Ren, X.G., Zhao, H.F., Wang, X.J., Sun, L.D., and Yan, C.H.: Near-infrared to visible upconversion in Er3+ and Yb3+ codoped Lu2O3 nanocrystals: Enhanced red color upconversion and three-photon process in green color upconversion. J. Phys. Chem. C 113, 4413 (2009).CrossRefGoogle Scholar
Zhang, F. and Zhao, D.Y.: Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents. ACS Nano 3, 159 (2009).CrossRefGoogle ScholarPubMed
Li, Y.P., Zhang, J.H., Zhang, X., Luo, Y.S., Lu, S.Z., Hao, Z.D., and Wang, X.J.: Spectral probing of surface luminescence of cubic Lu2O3:Eu3+ nanocrystals synthesized by hydrothermal approach. J. Phys. Chem. C 113, 17705 (2009).CrossRefGoogle Scholar
Du, Y.P., Zhang, Y.W., Yan, Z.G., Sun, L.D., and Yan, C.H.: Highly luminescent self-organized sub-2-nm EuOF nanowires. J. Am. Chem. Soc. 131, 16364 (2009).CrossRefGoogle ScholarPubMed
Fujihara, S., Koji, S., and Kimura, T.: Structure and optical properties of (Gd, Eu)F3-nanocrystallized sol–gel silica films. J. Mater. Chem. 14, 1331 (2004).CrossRefGoogle Scholar
Fujihara, S. and Tokumo, K.: Chemical processing for inorganic fluoride and oxyfluoride materials having optical functions. J. Fluorine Chem. 130, 1106 (2009).CrossRefGoogle Scholar
Antic-Fidancev, E., Holsa, J., Krupa, J.C., and Lastusarri, M.: Crystal fields in ROF: Tb3+ (R = La, Gd). J. Alloys Compd. 380, 303 (2004).CrossRefGoogle Scholar
Zhang, F., Shi, Y.F., Sun, X.H., Zhao, D.Y., and Stucky, G.D.: Formation of hollow upconversion rare-earth fluoride nanospheres: Nanoscale Kirkendall effect during ion exchange. Chem. Mater. 21, 5237 (2009).CrossRefGoogle Scholar
Wu, Q., Chen, Y., Xiao, P., Zhang, F., Wang, X.Z., and Hu, Z.: Hydrothermal synthesis of cerium fluoride hollow nanostructures in a controlled growth microenvironment. J. Phys. Chem. C 112, 9604 (2008).CrossRefGoogle Scholar
Yang, Z.J., Han, D.Q., Ma, D.L., Liang, H., Liu, L., and Yang, Y.Z.: Fabrication of monodisperse CeO2 hollow spheres assembled by nano-octahedra. Cryst. Growth Des. 10, 291 (2010).CrossRefGoogle Scholar
Jia, G., You, H.P., Liu, K., Zheng, Y.H., Guo, N., and Zhang, H.J.: Highly uniform Gd2O3 hollow microspheres: Template-directed synthesis and luminescence properties. Langmuir 26, 5122 (2010).CrossRefGoogle ScholarPubMed
Zhang, L.H., Jia, G., You, H.P., Liu, K., Yang, M., Song, Y.H., Zheng, Y.H., Huang, Y.H., Guo, N., and Zhang, H.J.: Sacrificial template method for fabrication of submicrometer-sized YPO4:Eu3+ hierarchical hollow spheres. Inorg. Chem. 49, 3305 (2010).CrossRefGoogle ScholarPubMed
Wang, F. and Liu, X.G.: Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642 (2008).CrossRefGoogle ScholarPubMed
Caruso, F., Caruso, R.A., and Mohwald, H.: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282, 1111 (1998).CrossRefGoogle ScholarPubMed
Dong, W.F., Ferri, J.K., Adalseinsson, T., Schonhoff, M., Sukhorukov, G.B., and Mohwald, H.: Influence of shell structure on stability, integrity, and mesh size of polyelectrolyte capsules: Mechanism and strategy for improved preparation. Chem. Mater. 17, 2603 (2005).CrossRefGoogle Scholar
Li, Y.S., Shi, J.L., Hua, Z.L., Chen, H.R., Ruan, M.L., and Yan, D.S.: Hollow spheres of mesoporous alumisilicates with a three dimensional pore network and extraordinary hydrothermal stability. Nano Lett. 3, 609 (2003).CrossRefGoogle Scholar
He, T., Chen, D.R., Jiao, X.L., Xu, Y.Y., and Gu, Y.X.: Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langmuir 20, 8404 (2004).CrossRefGoogle ScholarPubMed
Wu, C.Z., Xie, Y., Lei, L.Y., Hu, S.Q., and OuYang, C.Z.: Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv. Mater.. 18, 1727 (2006).CrossRefGoogle Scholar
Penn, R.L. and Banfield, J.F.: Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Am. Mineral. 83, 1077 (1998).CrossRefGoogle Scholar
Penn, R.L. and Banfield, J.F.: Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 281, 969 (1998).CrossRefGoogle ScholarPubMed
Penn, R.L.: Kinetics of oriented aggregation. J. Phys. Chem. B 108, 12707 (2004).CrossRefGoogle Scholar
Liu, B. and Zeng, H.C.: Mesoscale organization of CuO nanoribbons: Formation of “dandelions”. J. Am. Chem. Soc. 126, 8124 (2004).CrossRefGoogle ScholarPubMed
Ostwald, W.: On the assumed isomerism of red and yellow mercury oxide and the surface tension of solid bodies. Z. Phys. Chem. Stoechiom. Verwandtschafts. 34, 495 (1900).CrossRefGoogle Scholar
Chang, Y., Teo, J.J., and Zeng, H.C.: Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21, 1074 (2005).CrossRefGoogle ScholarPubMed
Yu, H.Y., Yu, J.G., Liu, S.W., and Mann, S.: Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chem. Mater. 19, 4327 (2007).CrossRefGoogle Scholar
Kirkendall, E., Thomassen, L., and Upthegrove, C.: Rates of diffusion of copper and zinc in alpha brass. Trans. AIME 133, 186 (1939).Google Scholar
Kirkendall, E.O.: Diffusion of zinc in alpha brass. Trans. AIME 147, 104 (1942).Google Scholar
Smigelskas, A.D. and Kirkendall, E.O.: Zinc diffusion in alpha brass. Trans. AIME 171, 130 (1947).Google Scholar
Chiang, R.K. and Chiang, R.T.: Formation of hollow Ni2P nanoparticles based on the nanoscale Kirkendall effect. Inorg. Chem. 46, 369 (2007).CrossRefGoogle ScholarPubMed
Wang, Y., Bai, X., Liu, T., Dong, B., Xu, L., Liu, Q., and Song, H.W.: Solvothermal synthesis and luminescence properties of monodisperse Gd2O3:Eu3+ and Gd2O3:Eu3+@SiO2 nanospheres. J. Solid State Chem. 183, 2779 (2010).CrossRefGoogle Scholar
Pang, M., Wang, Q., and Zeng, H.C.: Self-generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au nanostructures. Chem. Eur. J. 18, 14605 (2012).CrossRefGoogle ScholarPubMed
Petoral, R.M., Soderlind, F., Klasson, A., Suska, A., Fortin, M.A., Abrikossova, N., Selegard, L., Kall, P.O., Engstrom, M., and Uvdal, K.: Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: A bifunctional material with fluorescent labeling and MRI contrast agent properties. J. Phys. Chem. C 113, 6913 (2009).CrossRefGoogle Scholar
Milanov, A.P., Toader, T., Parala, H., Barreca, D., Gasparotto, A., Bock, C., Becker, H.W., Ngwashi, D.K., Cross, R., Paul, S., Kunze, U., Fishcher, R., and Devi, A.: Lanthanide oxide thin films by metalorganic chemical vapor deposition employing volatile guanidinate precursors. Chem. Mater. 21, 5443 (2009).CrossRefGoogle Scholar
Vetrone, F., Boyer, J.C., Capobianco, A.A., Speghini, A., and Bettinelli, M.: Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3: Er3+. Chem. Mater. 15, 2737 (2003).CrossRefGoogle Scholar
Pandozzi, F., Vetrone, F., Boyer, J.C., Naccache, R., Capobianco, J.A., Speghini, A., and Bettinelli, M.: A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals. J. Phys. Chem. B 109, 17400 (2005).CrossRefGoogle ScholarPubMed
Bai, X., Song, H.W., Pan, G.H., Lei, Y.Q., Wang, T., Ren, X.G., Lu, S.Z., Dong, B., Dai, Q.L., and Fan, L.B.: Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects. J. Phys. Chem. C 111, 13611 (2007).CrossRefGoogle Scholar
Supplementary material: File

Wang Supplementary Material

Figures S1-S4

Download Wang Supplementary Material(File)
File 2.7 MB