Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T02:42:12.111Z Has data issue: false hasContentIssue false

Controlled synthesis of polystyrene-assisted tin-doped indium oxide nanowire networks

Published online by Cambridge University Press:  03 April 2017

Qiang Li
Affiliation:
Key Laboratory of Physical Electronics and Devices for Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China; and Solid-State Lighting Engineering Research Center, School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China
Lungang Feng
Affiliation:
Solid-State Lighting Engineering Research Center, School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China
Shuai Wang
Affiliation:
Solid-State Lighting Engineering Research Center, School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China
Yu-Feng Li
Affiliation:
Key Laboratory of Physical Electronics and Devices for Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China; and Solid-State Lighting Engineering Research Center, School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China
Feng Yun*
Affiliation:
Key Laboratory of Physical Electronics and Devices for Ministry of Education and Shaanxi Provincial Key Laboratory of Photonics & Information Technology, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China; and Solid-State Lighting Engineering Research Center, School of Electronic and Information Engineering, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polystyrene spheres were found to be an effective assisted material in the growth of indium-tin-oxide (ITO) nanowire networks, bearing low temperature, high purity, and good control of size. The temperature and time of growth were studied to achieve ITO nanowire networks with high transmission and low resistivity. When prepared by PS spheres of 670 nm dia. for 15 min at 300 °C, the transmittance is above 90% after the wave length of 400 nm, and the sheet resistance is ∼200 Ω/□. Polystyrene-assisted ITO nanowires showed the high degree of crystallinity with lattice fringes, and well coincided cubic phase of In2O3. The density of ITO nanowire networks were controlled by polystyrene spheres and the residual polystyrene was removed by thermal annealing. ITO nanowire networks open new opportunities for optoelectronic devices needing special morphology for the improvement of light extraction efficiency, and as a new type of conductive film, which have an even broad application arena.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Winston V. Schoenfeld

References

REFERENCES

Li, C., Zhang, D., Han, S., Liu, X., Tang, T., and Zhou, C.: Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 15, 143146 (2003).CrossRefGoogle Scholar
Bellew, A.T., Bell, A.P., Mccarthy, E.K., Fairfield, J.A., and Boland, J.J.: Programmability of nanowire networks. Nanoscale 6, 9632 (2014).CrossRefGoogle ScholarPubMed
Kim, H.W., Kim, H.S., Na, H.G., Yang, J.C., Choi, R., Jeong, J.K., Lee, C., and Kim, D.Y.: One-step fabrication and characterization of silica-sheathed ITO nanowires. J. Solid State Chem. 183, 24902495 (2010).Google Scholar
Borgström, M.T., Immink, G., Ketelaars, B., Algra, R., and Bakkers, E.: Synergetic nanowire growth. Nat. Nanotechnol. 2, 541544 (2007).Google Scholar
Wan, Q., Dattoli, E.N., Fung, W.Y., Guo, W., Chen, Y., Pan, X., and Lu, W.: High-performance transparent conducting oxide nanowires. Nano Lett. 6, 29092915 (2006).CrossRefGoogle ScholarPubMed
Hill, J.J., Banks, N., Haller, K., Orazem, M.E., and Ziegler, K.: An interfacial and bulk charge transport model for dye-sensitized solar cells based on photoanodes consisting of core–shell nanowires arrays. J. Am. Chem. Soc. 133, 1866318672 (2011).Google Scholar
Noh, J.H., Han, H.S., Lee, S., Kim, J.Y., Hong, K.S., Han, G.S., Shin, H., and Jung, H.S.: Nanowire-based three-dimensional transparent conducting oxide electrodes for extremely fast charge collection. Adv. Energy Mater. 1, 829835 (2011).CrossRefGoogle Scholar
Xue, X.Y., Chen, Y.J., Liu, Y.G., Shi, S.L., Wang, Y.G., and Wang, T.H.: Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires. Appl. Phys. Lett. 88, 201907 (2006).Google Scholar
Afshar, M., Preiß, E.M., Sauerwald, T., Rodner, M., Feili, D., Straub, M., König, K., Schütze, A., and Seidel, H.: Indium-tin-oxide single-nanowire gas sensor fabricated via laser writing and subsequent etching. Sens. Actuators, B 215, 525535 (2015).Google Scholar
Cairns, D.R., Witte, R.P., Sparacin, D.K., Sachsman, S.M., Paine, D.C., Crawford, G.P., and Newton, R.: Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl. Phys. Lett. 76, 14251427 (2000).Google Scholar
Freeman, A.J., Poeppelmeier, K.R., Mason, T.O., Chang, R.P.H., and Marks, T.J.: Chemical and thin-film strategies for new transparent conducting oxides. MRS Bull. 25, 4551 (2000).Google Scholar
Joanni, E., Savu, R., Desousagoes, M., Bueno, P., Defreitas, J., Nogueira, A., Longo, E., and Varela, J.: Dye-sensitized solar cell architecture based on indium–tin oxide nanowires coated with titanium dioxide. Scr. Mater. 57, 277280 (2007).CrossRefGoogle Scholar
Wang, G.J., Chen, H.T., and Yang, H.: Fabrication of crystalline indium tin oxide nanobasket electrodes using aluminum anodic oxide template. Jpn. J. Appl. Phys. 47, 57275729 (2008).Google Scholar
Yang, F. and Forrest, S.R.: Photocurrent generation in nanostructured organic solar cells. ACS Nano 2, 10221032 (2008).Google Scholar
Yu, P., Chang, C.H., Su, M.S., Hsu, M.H., and Wei, K.H.: Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells. Appl. Phys. Lett. 96, 153307 (2010).Google Scholar
Fung, M.K., Sun, Y.C., Ng, A., Ng, A.M.C., Djurišić, A.B., Chan, H.T., and Chan, W.K.: Indium tin oxide nanorod electrodes for polymer photovoltaics. ACS Appl. Mater. Interfaces 3, 522527 (2011).CrossRefGoogle ScholarPubMed
Rider, D.A., Tucker, R.T., Worfolk, B.J., Krause, K.M., Lalany, A., Brett, M.J., Buriak, J.M., and Harris, K.D.: Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells. Nanotechnology 22, 085706 (2011).Google Scholar
Savu, R. and Joanni, E.: Effect of processing conditions on the nucleation and growth of indium-tin-oxide nanowires made by pulsed laser ablation. J. Mater. Sci. 43, 609613 (2008).CrossRefGoogle Scholar
Chang, W.C., Kuo, C.H., Lee, P.J., Chueh, Y.L., and Lin, S.J.: Synthesis of single crystal Sn-doped In2O3 nanowires: Size-dependent conductive characteristics. Phys. Chem. 14, 1304113045 (2012).Google Scholar
Park, H.K., Yoon, S.W., Chung, W.W., Min, B.K., and Do, Y.R.: Fabrication and characterization of large-scale multifunctional transparent ITO nanorod film. J. Mater. Chem. A 1, 5860 (2013).Google Scholar
Dattoli, E.N. and Lu, W.: ITO nanowires and nanoparticles for transparent films. MRS Bull. 36, 782 (2011).Google Scholar
Johnson, M.C., Aloni, S., McCready, D.E., and Bourret-Courchesne, E.D.: Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des. 6, 19361941 (2006).Google Scholar
Meng, G., Yanagida, T., Nagashima, K., Yoshida, H., Kanai, M., Klamchuen, A., Zhuge, F., He, Y., Rahong, S., Fang, X., Takeda, S., and Kawai, T.: Impact of preferential indium nucleation on electrical conductivity of vapor–liquid–solid grown indium–tin oxide nanowires. J. Am. Chem. Soc. 135, 70337038 (2013).Google Scholar
Hashim, A.: Nanowires-Implementations and Applications (InTech, Rijeka, Croatia, 2011); pp. 5998.Google Scholar
Beaudry, A.L., Tucher, R.T., Laforge, J.M., Taschuk, M.T., and Brete, M.J.: Indium tin oxide nanowhisker morphology control by vapour–liquid–solid glancing angle deposition. Nanotechnology 23, 105608 (2012).Google Scholar
Kumar, R.R., Rao, K.N., Rajanna, K., and Phani, A.R.: Low temperature and self catalytic growth of ultrafine ITO nanowires by electron beam evaporation method and their optical and electrical properties. Mater. Res. Bull. 52, 167 (2014).CrossRefGoogle Scholar
Yamamoto, N., Morisawa, K., Murakami, J., and Nakatani, Y.: Formation of ITO nanowires using conventional magnetron sputtering. ESC Solid State Lett. 3, 84 (2014).Google Scholar
Li, S., Yang, X., and Huang, W.: Synthesis of monodisperse polymer microspheres with mercapto groups and their application as stabilizer for gold metallic colloid. Macromol. Chem. Phys. 206, 19671972 (2005).Google Scholar
McDonald, C.J., Bouck, K.J., Chaupt, A.B., and Stevens, C.J.: Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules 33, 15931605 (2000).CrossRefGoogle Scholar
Bai, F., Yang, X., Li, R., Huang, B., and Huang, W.: Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer 47, 57755784 (2006).Google Scholar
Cong, Y., Xia, T., Zou, M., Li, Z., Peng, B., Guo, D., and Deng, Z.: Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J. Mater. Chem. B 2, 34503461 (2014).CrossRefGoogle ScholarPubMed
Zhao, K., Zhao, J., Wu, C., Zhang, S., Deng, Z., Hu, X., Chen, M., and Peng, B.: Fabrication of silver-decorated sulfonated polystyrene microspheres for surface-enhanced Raman scattering and antibacterial applications. RSC Adv. 5, 6954369554 (2015).Google Scholar
Huang, Y., Yun, F., Wang, Y., Ding, W., Li, Y., Wang, H., Zhang, Y., Guo, M., Su, X., Liu, S., and Hou, X.: Surface plasmon enhanced green light emitting diodes with silver nanorod arrays embedded in p-GaN. Jpn. J. Appl. Phys. 53, 084001 (2014).Google Scholar
Kumar, R.R., Gaddam, V., Rao, K.N., and Rajanna, K.: Low temperature VLS growth of ITO nanowires by electron beam evaporation method. Mater. Res. Express 1, 035008 (2014).Google Scholar
Li, L., Chen, S., Kim, J., Xu, C., Zhao, Y., and Ziegler, K.J.: Controlled synthesis of tin-doped indium oxide nanowires. J. Cryst. Growth 413, 3136 (2015).Google Scholar
Wang, Y., Lu, L., and Wu, F.: Indium tin oxide @carbon core-shell nanowire and jagged indium tin oxide nanowire. Nanoscale Res. Lett. 5, 1682 (2010).CrossRefGoogle ScholarPubMed
Yu, H.K. and Lee, J.L.: Effect of ion beam assisted deposition on the growth of indium tin oxide (ITO) nanowires. CrystEngComm 16, 4108 (2014).Google Scholar
Langford, J.I. and Wilson, A.J.C.: Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978).Google Scholar
Dam, D.T., Wang, X., and Lee, J.M.: Fabrication of a mesoporous Co(OH)2/ITO nanowire composite electrode and its application in super capacitors. RSC Adv. 2, 10512 (2012).Google Scholar
Maestre, D., Cremades, A., Gregoratti, L., and Piqueras, J.: Indium tin oxide micro- and nanostructures grown by thermal treatment of InN/SnO2 . J. Phys. Chem. C 114, 34113415 (2010).Google Scholar
Nguyen, P., Vaddiraju, S., and Meyyappan, M.: Indium and tin oxide nanowires by vapor–liquid–solid growth technique. J. Electron. Mater. 35, 200206 (2006).Google Scholar
Pan, D.H-K. and Prest, W.M.: Surface of polymer blends: X-ray photoelectron spectroscopy studies of polystyrene poly blends. J. Appl. Phys. 58(8), 28612870 (1985).Google Scholar
Wan, N., Xu, J., Chen, G., Gan, X., Guo, S., Xu, L., and Chen, K.: Broadband anti-reflection and enhanced field emission from catalyst-free grown small-sized ITO nanowires at a low temperature. Acta Mater. 58, 30683072 (2010).Google Scholar
Garnett, E. and Yang, P.: Light trapping in silicon nanowire solar cells. Nano Lett. 10, 10821087 (2010).CrossRefGoogle ScholarPubMed
Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F., and Christiansen, S.H.: Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters. Nano Lett. 9, 15491554 (2009).CrossRefGoogle ScholarPubMed
Kim, B.J., Lee, C., Jung, Y., Baik, K.H., Mastro, M.A., Hite, J.K., Eddy, C.R., and Kim, J.: Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes. Appl. Phys. Lett. 99, 143101 (2011).Google Scholar
Pang, S., Hernandez, Y., Feng, X., and Müllen, K.: Graphene as transparent electrode material for organic electronics. Adv. Mater. 23, 27792795 (2011).CrossRefGoogle ScholarPubMed
Li, Q., Gong, Z., Wang, S., Wang, J., Zhang, Y., and Yun, F.: Bipolar resistive switching behaviors of ITO nanowire networks. AIP Adv. 6, 025222 (2016).Google Scholar
Li, Q., Gong, Z., Li, Y., Liu, H., Feng, L., Liu, S., and Yun, F.: Electro-optical properties of low-temperature growth indium-tin-oxide nanowires using polystyrene spheres as catalyst. Nanoscale Res. Lett. 11, 131 (2016).CrossRefGoogle ScholarPubMed
Wang, L., Ma, J., Liu, Z., Yi, X., Zhu, H., and Wang, G.: In situ fabrication of bendable microscale hexagonal pyramids array vertical light emitting diodes with graphene as stretchable electrical interconnects. ACS Photonics 1, 421429 (2014).Google Scholar
Supplementary material: File

Li supplementary material

Fig. S1-S2

Download Li supplementary material(File)
File 1.3 MB
Supplementary material: Image

Li supplementary material

Figure 1

Download Li supplementary material(Image)
Image 1.4 MB
Supplementary material: Image

Li supplementary material

Figure 2

Download Li supplementary material(Image)
Image 1.5 MB
Supplementary material: Image

Li supplementary material

Figure 3

Download Li supplementary material(Image)
Image 1.1 MB