Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T22:27:06.487Z Has data issue: false hasContentIssue false

Controlled growth of highly aligned amorphous SiOx sunflower-like morphology

Published online by Cambridge University Press:  31 January 2011

Xitian Zhang
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China
Zhuang Liu
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China
Zhi Zheng
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China
Suikong Hark*
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, People’s Republic of China
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Highly aligned nanowire bundles were controllably fabricated through the reaction of Si with oxygen, using molten Ga and Au as catalysts. Scanning electron microscopy reveals that the bundles have the ability to self-assemble into various morphologies, a few of which, including one that strikingly resembles a sunflower, were not reported before. Examinations of the bundles by transmission electron microscopy show that they contain fine, amorphous SiOx nanowires, with x ranging from 1.2 to 1.5. In the sunflower-like morphology, highly packed bundles form the disc florets and loosely packed bundles around the rim of the disc form the ray florets. We have studied the conditions under which the sunflower-like morphology could be obtained and suggest a possible mechanism for its growth. Room-temperature cathodoluminescence spectra of the nanowire bundles show that they emit an intense broad-band light covering the entire visible range.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hu, J.Q., Jiang, Y., Meng, X.M., Lee, C.S.Lee, S.T.: Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes. Small 1, 429 2005CrossRefGoogle ScholarPubMed
2Wang, Z.L.: Characterizing the structure and properties of individual wire-like nanoentities. Adv. Mater. 12, 1295 20003.0.CO;2-B>CrossRefGoogle Scholar
3Pan, Z.W., Dai, Z.R.Wang, Z.L.: Nanobelts of semiconducting oxides. Science 291, 1947 2001CrossRefGoogle ScholarPubMed
4Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F.Yan, H.Q.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003CrossRefGoogle Scholar
5Cui, Y.Lieber, C.M.: Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851 2001CrossRefGoogle ScholarPubMed
6Wang, D.W.Dai, H.J.: Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angew. Chem. 41, 4783 2002CrossRefGoogle ScholarPubMed
7Chen, X.H., Xu, J., Wang, R.M.Yu, D.P.: High-quality ultra-fine GaN nanowires synthesized via chemical vapor deposition. Adv. Mater. 15, 419 2003CrossRefGoogle Scholar
8Choi, H.J., Seong, H.K., Chang, J.Y., Lee, K., Park, Y.J., Kim, J.J., Lee, S.K., He, R.R., Kuykendall, T.Yang, P.D.: Single-crystalline diluted magnetic semiconductor GaN:Mn nanowires. Adv. Mater. 17, 1351 2005CrossRefGoogle ScholarPubMed
9Barrelet, C.J., Wu, Y., Bell, D.C.Lieber, C.M.: Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc. 125, 11498 2003CrossRefGoogle ScholarPubMed
10Zhang, X.T., Liu, Z., Li, Q., Leung, Y., Ip, K.M.Hark, S.K.: Routes to grow well-aligned arrays of ZnSe nanowires and nanorods. Adv. Mater. 17, 1405 2005CrossRefGoogle ScholarPubMed
11Pan, Z.W., Dai, S., Beach, D.B.Lowndes, D.H.: Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten callium. Nano Lett. 3, 1279 2003CrossRefGoogle Scholar
12Chen, S.J., Liu, Y.C., Shao, C.L., Mu, R., Lu, Y.M., Zhang, J.Y., Shen, D.Z.Fan, X.W.: Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 17, 586 2005CrossRefGoogle Scholar
13Yu, D.P., Huang, Q.L., Ding, Y., Zhang, H.Z., Bai, Z.G., Wang, J.J., Zou, Y.H., Qian, W., Xiong, G.C.Feng, S.Q.: Amorphous silica nanowires: Intensive blue light emitters. Appl. Phys. Lett. 73, 3076 1998CrossRefGoogle Scholar
14Meng, G.W., Peng, X.S., Wang, Y.W., Wang, C.Z., Wang, X.F.Zhang, L.D.: Synthesis and photoluminescence of aligned SiOx nanowire arrays. Appl. Phys. A 76, 119 2003CrossRefGoogle Scholar
15Zhu, Y.Q., Hsu, W.K., Terrones, M., Grobert, N., Terrones, H., Hare, J.P., Kroto, H.W.Walton, D.R.M.: 3D silicon oxide nanostructures: From nanoflowers to radiolarian. J. Mater. Chem. 8, 1859 1998CrossRefGoogle Scholar
16Wang, Z.L., Gao, R.P., Gole, J.L.Stout, J.D.: Silica nanotubes and nanofiber arrays. Adv. Mater. 12, 1938 20003.0.CO;2-4>CrossRefGoogle Scholar
17Pan, Z.W., Dai, Z.R., Ma, C.Wang, Z.L.: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817 2002CrossRefGoogle ScholarPubMed
18Zheng, B., Wu, Y.Y., Yang, P.D.Liu, J.: Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys. Adv. Mater. 14, 122 20023.0.CO;2-V>CrossRefGoogle Scholar
19Hao, Y.F., Meng, G.W., Ye, C.H.Zhang, L.D.: Reversible blue light emission from self-assembled silica nanocords. Appl. Phys. Lett. 87, 033106 2005CrossRefGoogle Scholar
20Zhang, X.T., Liu, Y.C., Zhang, J.Y., Lu, Y.M., Shen, D.Z., Fan, X.W.Kong, X.G.: Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. J. Cryst. Growth 254, 80 2003CrossRefGoogle Scholar
21Mink, G., Varsanvi, G., Bertoti, I., Grabis, J., Vaivads, J., Millers, T.Szekely, T.: XPS characterization of ultrafine Si3N4 powders. Surf. Interface Anal. 12, 527 1988Google Scholar
22Stathis, J.H.Kastner, M.A.: Time-resolved photoluminescence in amorphous silicon dioxide. Phys. Rev. B: Condens. Matter 35, 2972 1987CrossRefGoogle ScholarPubMed
23Itoh, C., Suzuki, T.Itoh, N.: Luminescence and defect formation in undersified and densified amorphous SiO2. Phys. Rev. B: Condens. Matter 41, 3794 1990CrossRefGoogle ScholarPubMed
24Nishikawa, H., Shiroyama, T., Nakamura, R., Ohki, Y., Nagasawa, K.Hama, Y.: Photoluminescence from defect centers in high-purity silica glasses observed under 7.9 eV excitation. Phys. Rev. B: Condens. Matter 45, 586 1992CrossRefGoogle ScholarPubMed
25Gole, J.L., Dudle, F.P., Grantier, D.Dixon, D.A.: Origin of porous silicon photoluminescence: Evidence for a surface bound oxyhydride-like emitter. Phys. Rev. B: Condens. Matter 56, 2137 1997CrossRefGoogle Scholar
26Wu, J.J., Wong, T.C.Yu, C.C.: Growth and characterization of well-aligned nc-Si/SiOx composite nanowires. Adv. Mater. 14, 1643 20023.0.CO;2-Y>CrossRefGoogle Scholar
27Barranco, A., Yubero, F., Espinós, J.P., Groening, P.González-Elipe, A.R.: Electronic state characterization of SiOx thin films prepared by evaporation. J. Appl. Phys. 97, 113714 2005CrossRefGoogle Scholar
28Okamoto, H.: Desk Handbook: Phase Diagrams for Binary Alloys ASM International Materials Park, OH 2000Google Scholar