Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:14:52.198Z Has data issue: false hasContentIssue false

Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method

Published online by Cambridge University Press:  03 November 2014

Shuai Li
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics & Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Qiang Tao
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics & Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Dawei Li
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics & Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Qingyu Zhang*
Affiliation:
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics & Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ag–TiO2 hybrids are useful in various applications, such as photocatalysis, solar energy conversion, and biosensoring. In this study, oil-decorated TiO2 films were used to induce the formation of Ag nanoplates in AgNO3 solution via a photocatalytic method. Ag nanoplates in the products can be controlled by changing the oil-decoration time of films or changing the AgNO3 concentration of the solution. Oil decoration was found to be necessary in the formation of Ag nanoplates, and a critical concentration of AgNO3 solution was needed. The oil layer on the TiO2 films was demonstrated to play a role in the prevention of the reoxidation of the Ag atoms, and a growth model was proposed to interpret the formation of Ag nanoplates on the oil-decorated TiO2 films.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).Google Scholar
Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
Es-Souni, M., Es-Souni, M., Habouti, S., Pfeiffer, N., Lahmar, A., Dietze, M., and Solterbeck, C-H.: Brookite formation in TiO2-Ag nanocomposites and visible light induced templated growth of Ag nanostructures in TiO2. Adv. Funct. Mater. 20, 377 (2010).Google Scholar
Awazu, K., Fujimaki, M., Rockstuhl, C., and Tominaga, J.: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676 (2008).CrossRefGoogle ScholarPubMed
Hou, W. and Cronin, S.B.: A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612 (2013).Google Scholar
Tian, Y. and Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).CrossRefGoogle Scholar
Liu, Z., Hou, W., Pavaskar, P., Aykol, M., and Cronin, S.B.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).CrossRefGoogle ScholarPubMed
Ohko, Y., Tatsuma, T., Fujii, T., Naoi, K., Niwa, C., Kubota, Y., and Fujishima, A.: Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29 (2003).Google Scholar
Tanahashi, I., Iwagishi, H., and Chang, G.: Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Mater. Lett. 62, 2714 (2008).CrossRefGoogle Scholar
Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).Google Scholar
Mock, J.J., Barbic, M., Smith, D.R., Schultz, D.A., and Schultz, S.: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755 (2002).CrossRefGoogle Scholar
Félidj, N., Aubard, J., Lévi, G., Krenn, J., Salerno, M., Schider, G., Lamprecht, B., Leitner, A., and Aussenegg, F.: Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys. Rev. B 65, 075419 (2002).CrossRefGoogle Scholar
Jin, R., Cao, Y.C., Hao, E., Me, G.S., Schatz, G.C., and Mirkin, C.A.: Controlling anisotropic nanoparticles growth through plasmon excitation. Science 425, 487 (2004).Google Scholar
Matsubara, K., Kelly, K.L., Sakai, N., and Tatsuma, T.: Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals. J. Mater. Chem. 19, 5526 (2009).CrossRefGoogle Scholar
Tanabe, I., Matsubara, K., Stridge, S.D., Kazuma, E., and Kelly, K.L.: Photocatalytic growth and plasmon resonance-assisted photoelectrochemical toppling of upright Ag nanoplates on a nanoparticulate TiO2 film. Chem. Commun. 24, 3621 (2009).CrossRefGoogle Scholar
Kazuma, E., Matsubara, K., Kelly, K.L., Sakai, N., and Tatsuma, T.: Bi- and uniaxially oriented growth and plasmon resonance properties of anisotropic Ag nanoparticles on single crystalline TiO2 surfaces. J. Phys. Chem. C 113, 4758 (2009).Google Scholar
Li, D.W., Pan, L.J., Li, S., Liu, K., Wu, S.F., and Peng, W.: Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J. Phys. Chem. C 117, 6861 (2013).Google Scholar
Viswanatha, R., Santra, P.K., Dasgupta, C., and Sarma, D.D.: Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 98, 255501 (2007).Google Scholar
Mills, A., Hill, G., Stewart, M., Graham, D., Smith, W.E., Hodgen, S., Halfpenny, P.J., Faulds, K., and Robertson, P.: Characterization of novel Ag on TiO2 films for surface-enhanced Raman scattering. Appl. Spectrosc. 58, 922 (2004).Google Scholar
Arabatzis, I.M., Stergiopoulos, T., Bernard, M.C., Labou, D., Neophytides, S.G., and Falaras, P.: Silver-modified titanium dioxide thinfilms for efficient photodegradation of methyl orange. Appl. Catal., B 42, 187 (2003).Google Scholar
Ahmed, M.H., Keyes, T.E., Byrne, J.A., Blackledge, C.W., and Hamilton, J.W.: Adsorption and photocatalytic degradation of human serum albumin on TiO2 and Ag–TiO2 films. J. Photochem. Photobiol., A 222, 123 (2011).Google Scholar
Yang, L., Jiang, X., Ruan, W., Yang, J., Zhao, B., Xu, W., and Lombardi, J.R.: Charge transfer induced surface-enhanced Raman scattering on Ag TiO2 nanocomposites. J. Phys. Chem. C 113, 16226 (2009).CrossRefGoogle Scholar
Sudnik, L.M., Norrod, K.L., and Rowlen, K.L.: SERS-active Ag films from photoreduction of Ag+ on TiO2. Appl. Spectrosc. 50, 422 (1996).Google Scholar
Sakai, Y., Tanabe, I., and Tatsuma, T.: Orientation-selective removal of upright Ag nanoplates from a TiO2 film. Nanoscale 3, 4101 (2011).Google Scholar
Tanabe, I., Matsubara, K., Sakai, N., and Tatsuma, T.: Photoelectrochemical and optical behavior of single upright Ag nanoplates on a TiO2 film. J. Phys. Chem. C 115, 1695 (2011).Google Scholar
Moores, A. and Goettmann, F.: The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J. Chem. 30, 1121 (2006).Google Scholar
Ung, T., Liz-Marza, L.M., and Mulvaney, P.: Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 105, 3441 (2001).Google Scholar
Ohring, M.: Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, USA, 2002).Google Scholar
Niederberger, M. and Cölfen, H.: Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 8, 3271 (2006).Google Scholar
Zhang, J., Huang, F., and Lin, Z.: Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2, 18 (2010).CrossRefGoogle ScholarPubMed
Yin, S., Huang, F., Zhang, J., Zheng, J., and Lin, Z.: The effects of particle concentration and surface charge on the oriented attachment growth kinetics of CdTe nanocrystals in H2O. J. Phys. Chem. C 115, 10357 (2011).CrossRefGoogle Scholar
Li, D.S., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., and De Yoreo, J.J.: Direction-specific interactions control crystal growth by oriented attachment. Science 36, 1014 (2012).Google Scholar