Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T01:16:51.139Z Has data issue: false hasContentIssue false

Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method

Published online by Cambridge University Press:  31 January 2011

Xiao-Feng Qiu
Affiliation:
Laboratory of Mesoscopie Materials Science, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Jin-Zhong Xu
Affiliation:
Laboratory of Mesoscopie Materials Science, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Jian-Ming Zhu
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, People's Republic of China
Jun-Jie Zhu*
Affiliation:
Laboratory of Mesoscopie Materials Science, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Shu Xu
Affiliation:
Laboratory of Mesoscopie Materials Science, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
Hong-Yuan Chen
Affiliation:
Laboratory of Mesoscopie Materials Science, Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A simple pulse sonoelectrochemical technique was used to synthesize highly dispersed spherical palladium particles and a dendritic Pd superstructure in the presence of cethyltrimethylammonium bromide (CTAB) at room temperature. The shape and size of spherical nanocrystalline Pd can be controlled by varying current density, the interval between two continuous ultrasonic pulses, ultrasonic intensity, and the concentration of CTAB. The possible growth mechanism of dendritic-structured Pd is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hwang, C.B., Fu, Y.S., and Yu, S.J., J. Catal. 195, 336 (2000);CrossRefGoogle Scholar
2.Forster, S. and Antonietti, M., Adv. Mater. 10, 195 (1998);3.0.CO;2-V>CrossRefGoogle Scholar
3.Marinakos, S.M., Shultz, D.A., and Fldheim, D.L., Adv. Mater. 11, 134 (1999); G. Schmid, Chem. Rev. 92, 1709 (1992).3.0.CO;2-I>CrossRefGoogle Scholar
4.Zhao, M. and Crooks, R.M., Adv. Mater. 11, 217 (1999);Google Scholar
5.Valden, M., Lai, X., and Goodman, D.W., Science 218, 1647 (1998); G.L. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin, Nature 393, 346 (1998).CrossRefGoogle Scholar
6.Goodman, D.W., J. Phys. Chem. 100, 13090 (1996); J.D. Aiken, III, Y. Lin, and R.G. Finke, J. Mol. Catal., A 114, 29 (1996);CrossRefGoogle Scholar
7.Reetz, M.T. and Helbig, W., J. Am. Chem. Soc. 116, 7401 (1994);CrossRefGoogle Scholar
8.Lewis, L.N., Chem. Rev. 93, 2693 (1993).CrossRefGoogle Scholar
9.Teranishi, T. and Miyake, M., Chem. Mater. 10, 594 (1998);CrossRefGoogle Scholar
10.Okitsu, K., Yue, A., Tanabe, S., and Matsumoto, H., Chem. Mater. 12, 3006 (2000); M.T. Reetzm, W. Helbing, S.A. Quaiser, U. Stimming, N. Breuer, and R. Volgel, Science 267, 367 (1995).CrossRefGoogle Scholar
11.Trivino, G.C., Klabunde, K.J., and Dale, E.B., Langmuir 3, 986 (1987).CrossRefGoogle Scholar
12.Li, T., Moon, J., Morrone, A.A., Mecholsky, J.J., Talham, D.R., and Adair, J.H., Langmuir 15, 4328 (1999).CrossRefGoogle Scholar
13.Hwang, C.B., Fu, Y.S., and Yu, S.J., J. Catal. 195, 336 (2000).CrossRefGoogle Scholar
14.Dhas, N.A. and Gedanken, A., J. Mater. Chem. 8, 445 (1998).CrossRefGoogle Scholar
15.Kaplin, A.A., Bramin, V.A., and Stasl, I.E., Zh. Anal. Khim. 43, 921 (1988).Google Scholar
16.Suslick, K.S., Choe, S.B., Cichovlas, A.A., and Grinstaff, M.W., Nature 353, 414 (1991); Y.T. Didenko, W.B. McNamara, and K.S. Suslick, J. Am. Chem. Soc. 121, 5817 (1999).CrossRefGoogle Scholar
17.Mason, T.J., Walton, J.P., and Lorimer, D.J., Ultrasonics 28, 333 (1990); T.J. Mason, Practical Sonoelectrochemistry (Ellis Horwood, Chichester, U.K., 1991), p. 146.CrossRefGoogle Scholar
18.Reisse, J., Francois, H., Vandercammen, J., Fabre, O., Mesmaeker, K.D.A., Maerschalk, C., and Delplancke, J.L., Electrochim. Acta 39, 37 (1994); A. Durant, J.L. Deplancke, R. Winand, and J. Reisse, Tetrahedron Lett. 36, 4257 (1995).Google Scholar
19.Mastai, Y., Polsky, R., Koltypin, Y., Gedanken, A., and Hodes, G., J. Am. Chem. Soc. 121, 10047 (1999).CrossRefGoogle Scholar
20.Zhu, J.J., Liu, S.W., Palchik, O., Koltypin, Y., and Gedanken, A., Langmuir 16, 6396 (2000).CrossRefGoogle Scholar
21.Jiang, L.P., Zhang, J.R., Wang, J., and Zhu, J.J., Chin. J. Inorg. Chem. 18, 1161 (2002).Google Scholar
22.Mason, T.J., Sonochemistry: The Uses of Ultrasound in Chemistry (The Royal Society of Chemistry, Herts, U.K., 1990), p. 136.Google Scholar
23.Powder Diffraction File No. 05–0681 (International Center for Diffraction Data, Newton Square, PA, 1953).Google Scholar
24.Tang, Z., Kotov, N.A., and Giersig, M., Science 297, 237 (2002).CrossRefGoogle Scholar
25.Wash, D. and Mann, S., Nature 377, 320 (1995); J.D. Hopwood and S. Mann, Chem. Mater. 9, 1819 (1997); G.D. Rees, R. Evans-Gowing, S.J. Hammond, and B.H. Robinson, Langmuir 15, 1993 (1999); A. Filankembo and M.P. Pileni, J. Phys. Chem. B 104, 5865 (2000).Google Scholar
26.Tian, Z.R., Liu, J., Voigt, J.A., Xu, H., and Mcdermott, M.J., Nano Lett. 3, 89 (2003).CrossRefGoogle Scholar
27.Katzenelson, O. and Avnir, D., Chem.—Eur. J. 12, 73 (1996);Google Scholar
28.Jacob, B. and Garik, P., Nature 343, 523 (1990).CrossRefGoogle Scholar
29.Socol, Y., Abramson, O., Gedanken, A., Meshorer, Y., Berenstein, L., and Zaban, A., Langmuir 18, 4736 (2002).CrossRefGoogle Scholar