Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:29:19.607Z Has data issue: false hasContentIssue false

Control of Y2BaCuO5 size and morphology in melt-processed YBa2Cu3O7−δ superconductor

Published online by Cambridge University Press:  03 March 2011

N. Sakai
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 16-25 Shibaura 1-Chome, Minato-ku, Tokyo 105, Japan
S.I. Yoo
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 16-25 Shibaura 1-Chome, Minato-ku, Tokyo 105, Japan
M. Murakami
Affiliation:
Superconductivity Research Laboratory, International Superconductivity Technology Center, 16-25 Shibaura 1-Chome, Minato-ku, Tokyo 105, Japan
Get access

Abstract

Important factors governing the size and the morphology of Y2BaCuO5 (Y211) at 1100 °C in air were investigated for three different starting materials having the same nominal composition of Y:Ba:Cu = 1.8:2.4 : 3.4, Y2BaCuO5-BaCuO2-CuO-Pt. Y2O3-BaCuO2-CuO-Pt, and melt-quenched materials from 1400 °C in a Pt crucible. With various amounts of Pt doping, the heating rate and the holding time were employed as the processing parameters. While, with the aid of Pt doping as the effective growth inhibitor, fine round Y211 grains could be obtained by simply employing a refined round Y211 precursor and a rapid healing, there were several important factors for obtaining fine acicular (or needle-like) Y211 grains as follows: (i) The Pt dopants dissolved in the liquid phase should act as the effective heterogeneous nucleation sites. (ii) Y211 grains should grow into the acicular shapes before the system reaches an equilibrium amount of Y211 in the liquid (i.e., reaction-controlled). (iii) A large amount of the liquid phase should be supplied instantly at the partial melt stage with a rapid heating.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R.B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).CrossRefGoogle Scholar
2Salama, K., Selvamanikam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).Google Scholar
3Murakami, M., Morita, M., Doi, K., and Miyamoto, M., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
4Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., and Tanaka, S., Adv. Superconductivity II, 285 (1990).CrossRefGoogle Scholar
5McGinn, P., Chen, W., Zhu, N., Lanagan, M., and Balachandran, U., Appl. Phys. Lett. 57, 1455 (1990).CrossRefGoogle Scholar
6Meng, R. L., Kinalidis, C., Sun, Y. Y., Gao, L., Tao, Y. K., Hor, P. H., and Chu, C. W., Nature (London) 345, 326 (1990).CrossRefGoogle Scholar
7Izumi, T. and Shiohara, Y., J. Mater. Res. 7, 16 (1992).Google Scholar
8Sakai, N., Takaichi, H., and Murakami, M., ISTEC J. 6, 18 (1993).Google Scholar
9Murakami, M., Melt Processed High-Temperature Superconductors (World Scientific Publishing Co. Pte. Ltd., Singapore, 1992).Google Scholar
10Murakami, M., Fujimoto, H., Gotoh, S., Yamaguchi, K., Koshizuka, K., and Tanaka, S., Physica C 185, 321 (1991).Google Scholar
11Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101 (1991).CrossRefGoogle Scholar
12Morita, M., Tanaka, M., Takebayashi, S., Kimura, K., Miyamoto, K., and Sawano, K., Jpn. J. Appl. 30, L813 (1991).CrossRefGoogle Scholar
13Izumi, T., Nakamura, Y., Sung, T-H., and Shiohara, Y., J. Mater. Res. 7, 801 (1992).CrossRefGoogle Scholar
14Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 8, 1240 (1993).CrossRefGoogle Scholar
15Kim, W., Shim, G., Jang, D., Suh, C., Shin, W., and No, K., Jpn. J. Appl. Phys. 33, 999 (1994).Google Scholar
16Varanasi, C., Black, M. A., and Mc, P.J.Ginn, Supercond. Sci. Technol. 7, 10 (1994).CrossRefGoogle Scholar
17Varanasi, C. and McGinn, P.J., Physica C 207, 79 (1993).CrossRefGoogle Scholar
18Varanasi, C., McGinn, P.J., Pavate, V., and Kvam, E. P., Physica C 221, 46 (1994).CrossRefGoogle Scholar
19Murakami, M., Kondoh, A., Fujimoto, H., Sakai, N., Yamaguchi, K., Takata, T., Takamuku, K., Ogawa, N., Hirabayashi, I., Koshizuka, N., and Tanaka, S., J. Eng. Mater. Technol. 114, 189 (1992).CrossRefGoogle Scholar
20Krauns, Ch., Tagami, M., Sumida, M., Yamada, Y., and Shiohara, Y., Adv. Superconductivity 5, 767 (1993).Google Scholar
21Frangi, F., Higuchi, T., Deguchi, M., and Murakami, M., J. Mater. Res. (1995, in press).Google Scholar
22Gyorgy, E. M., van Dover, R.B., Jackson, K. A., Schneemeyer, L. F., and Waszcazk, J. V., Appl. Phys. 55, 283 (1989).Google Scholar