Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T10:22:12.192Z Has data issue: false hasContentIssue false

Contact fatigue in an alumina microcontact: A confocal laser scanning microscope study

Published online by Cambridge University Press:  31 January 2011

Yun Chen
Affiliation:
Max-Planck-Institute for Polymer Research, D-55128 Mainz, Germany
Kaloian Koynov
Affiliation:
Max-Planck-Institute for Polymer Research, D-55128 Mainz, Germany
Hans-Jürgen Butt*
Affiliation:
Max-Planck-Institute for Polymer Research, D-55128 Mainz, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Using a confocal laser scanning microscope the development of stress in a micromechanical contact could be measured for ruby with a resolution of ∼1 μm. Ruby (α-Al2O3: Cr3+) spheres with radii of 75 μm were compressed quasi-statically between two sapphire (α-Al2O3) plates. While applying an increasing uniaxial load, confocal microscopy was used to record the fluorescence spectra at the contact region. The peak positions of the fluorescence spectrum shift to longer wavelengths with increasing stress. By detecting the shift in wavelength the local stress could be measured. We adopted two-photon excitation process (800 nm wavelength) to reduce background fluorescence. Loading–unloading cycles were applied with the maximal loading force increased subsequently for each of the next cycle. Progressive fatigue was observed when the load exceeded 1.1 N. As long as the load did not exceed 4 N stress-versus-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus or increasing damage. Once the load exceeded 4 N, spikelike decreases of the stress were observed. This indicates the formation of microcracks on the 10 μm length scale.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, K.L.: Contact Mechanics Cambridge University Press Cambridge, UK 1985CrossRefGoogle Scholar
2Tichy, J.A.Meyer, D.M.: Review of solid mechanics in tribology. Int. J. Solids Structures 37, 391 2000CrossRefGoogle Scholar
3Ludema, K.C.: Friction, Wear, and Lubrication. A Textbook in Tribology CRC Press Boca Raton, FL 1996CrossRefGoogle Scholar
4Buzio, R., Boragno, C., Biscarini, F., de Mongeot, F.B.Valbusa, U.: The contact mechanics of fractal surfaces. Nat. Mater. 2, 233 2003CrossRefGoogle ScholarPubMed
5Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201 2006CrossRefGoogle Scholar
6Morag, L.Y.Etsion, I.: Resolving the contradiction of asperity plastic to elastic mode transition in current model of fractal surfaces. Wear 262, 624 2007CrossRefGoogle Scholar
7Anderson, T.L.: Fracture Mechanics Taylor & Francis Group London, UK 2005 621Google Scholar
8Sherman, D.Brandon, D.: Mechanical properties of hard materials and their relation to microstructure. Adv. Eng. Mater. 1, 161 19993.0.CO;2-A>CrossRefGoogle Scholar
9Lawn, B.R., Deng, Y., Miranda, P., Pajeras, P., Chai, H.Kim, D.K.: Overview: Damage in brittle layer structure from concentrated loads. J. Mater. Res. 17, 3019 2002CrossRefGoogle Scholar
10Zhang, Y., Bhowmick, S.Lawn, B.R.: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments. Monoliths. J. Mater. Res. 20, 2021 2005CrossRefGoogle Scholar
11Zhou, J.J., Shao, J.F.Xu, W.Y.: Coupled modeling of damage growth and permeability variation in brittle rocks. Mech. Res. Commun. 33, 450 2006CrossRefGoogle Scholar
12Lawn, B.R., Padture, N.P., Cai, H.Guiberteau, F.: Making ceramics “ductile”. Science 263, 1114 1994CrossRefGoogle ScholarPubMed
13Fett, T., Keller, R., Munz, D., Ernst, E.Thun, G.: Fatigue of alumina under contact load. Eng. Fract. Mech. 70, 1143 2003CrossRefGoogle Scholar
14Page, T.F., Oliver, W.C.McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 1992CrossRefGoogle Scholar
15Nowak, R., Sekino, T.Niihara, K.: Surface deformation of sapphire crystal. Philos. Mag. A 74, 171 1996CrossRefGoogle Scholar
16Nowak, R., Sekino, T.Niihara, K.: Non-linear surface deformation of the 1010 plane of sapphire: Identification of the linear features around spherical impressions. Acta Mater. 47, 4329 1999CrossRefGoogle Scholar
17Ostertag, C.P., Robins, L.H.Cook, L.P.: Cathodoluminescence measurement of strained alumina single crystals. J. Eur. Ceram. Soc. 7, 109 1991Google Scholar
18Antonyuk, S., Tomas, J., Heinrich, S.Mörl, L.: Breakage behaviour of spherical granulates by compression. Chem. Eng. Sci. 60, 4031 2005CrossRefGoogle Scholar
19Schawlow, A.L.: Fine structure and properties of chromium fluorescence in aluminum and magnesium oxide in Advances in Quantum Electronics, edited by J.R. Singer Columbia University Press New York 1961 50–64Google Scholar
20Feher, E.Sturge, M.D.: Effect of stress on the trigonal splittings of d3 ions in sapphire (α-Al2O3). Phys. Rev. 172, 244 1968CrossRefGoogle Scholar
21Barnett, J.D., Block, S.Piermarini, G.J.: Hydrostatic limits in liquids and solids to 100 kbar. J. Appl. Phys. 44, 5377 1973Google Scholar
22Piermarini, G.J., Block, S., Barnett, J.D.Forman, R.A.: Calibration of the pressure dependence of the R 1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 46, 2774 1975CrossRefGoogle Scholar
23Mao, H.K., Xu, J.Bell, P.M.: Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673 1986CrossRefGoogle Scholar
24Chen, Y., Best, A., Butt, H-J., Boehler, R., Haschke, T.Wiechert, W.: Pressure distribution in a mechanical microcontact. Appl. Phys. Lett. 88, 234101 2006CrossRefGoogle Scholar
25Chen, Y., Best, A., Haschke, T., Wiechert, W.Butt, H-J.: Stress and failure at mechanical contacts of microspheres under uniaxial loading. J. Appl. Phys. 101, 084908 2007CrossRefGoogle Scholar
26Molis, S.E.Clarke, D.R.: Measurement of stresses using fluorescence in an optical microprobe: Stresses around indentations in a chromium-doped sapphire. J. Am. Ceram. Soc. 73, 3189 1990CrossRefGoogle Scholar
27Huber, M.T.: On the theory of contact between elastic solids. Annalen der Physik. 14, 153 1904CrossRefGoogle Scholar
28Maugis, D.: Contact, Adhesion and Rupture of Elastic Solids Springer Berlin 2000CrossRefGoogle Scholar
29Hertz, H.: About the contact of solid elastic body. J. Reine Angewandte Mathematik. 92, 156 1882Google Scholar
30Kachanov, L.M.: Time of the rupture process under creep conditions. Izv. Acad. Nauk S.S.S.R. Otd. Tekh. Nauk. 8, 26 1958Google Scholar
31Loland, K.E.: Continuous damage model for load-response estimation of concrete. Cem. Concr. Res. 10, 395 1980CrossRefGoogle Scholar
32Taylor, L.M., Chen, E.P.Kuszmaul, J.S.: Microcrack-induced damage accumulation in brittle rock under dynamic loading. Comput. Methods Appl. Mech. Eng. 55, 301 1986CrossRefGoogle Scholar
33Tavares, L.M.King, R.P.: Modeling of particle fracture by repeated impacts using continuum damage mechanics. Powder Technol. 123, 138 2002Google Scholar
34Rhee, Y.W., Kim, H.W., Deng, Y.Lawn, B.R.: Brittle fracture versus quasi plasticity in ceramics: A simple predictive index. J. Am. Ceram. Soc. 84, 561 2001CrossRefGoogle Scholar
35Nowak, R.Sakai, M.: The anisotropy of surface deformation of sapphire: Continuous indentation of triangular indenter. Acta Metall. Mater. 42, 2879 1994CrossRefGoogle Scholar