Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T11:13:03.311Z Has data issue: false hasContentIssue false

Consolidation of translucent Ce3+-doped Lu2SiO5 scintillation ceramics by pressureless sintering

Published online by Cambridge University Press:  28 July 2014

Lingcong Fan
Affiliation:
Department of Electronics and Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Ying Shi*
Affiliation:
Department of Electronics and Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Jian Xu
Affiliation:
Department of Electronics and Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Jianjun Xie
Affiliation:
Department of Electronics and Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Fang Lei
Affiliation:
Department of Electronics and Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
*
a)Address all correspondence to this author. e-mail: yshi@shu.edu.cn
Get access

Abstract

The fabrication of Ce3+-doped lutetium oxyorthosilicate (Lu2SiO5:Ce, LSO:Ce) scintillation ceramics was investigated by pressureless sintering starting from synthetic submicrometer polycrystalline LSO:Ce powder. It was found that translucent LSO ceramics were densified successfully with relative density of 99.5% under sintering condition of 1720 °C for 4 h. As-sintered LSO ceramics were pore-free with average grain size of 5 μm and exhibited a translucent state. The broad emission spectra centered at 419 nm of the LSO:Ce ceramics under vacuum ultraviolet (VUV) and UV excitation at room temperature. Under x-ray excitation, the overall emission intensity of obtained LSO ceramics achieved twice of that of bismuth germanium oxide (also known as bismuth germanate) single crystal at room temperature. Under excitation of 356 nm and emission of 420 nm, the luminescence decay time of the obtained LSO scintillation ceramics reached only 21.2 ns. The light yield of the LSO ceramics was 21,300 ph/MeV, which reached 91% of that of LSO single crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Melcher, C.L. and Schweitzer, J.S.: Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39(4), 502 (1992).CrossRefGoogle Scholar
Daghighian, F., Shenderov, P., Pentlow, K.S., Graham, M.C., Melcher, C.L., and Schweitzer, J.S.: Evaluation of cerium doped lutetium oxyorthosilicate (LSO) scintillation crystals for PET. IEEE Trans. Nucl. Sci. 40(4), 1045 (1993).CrossRefGoogle Scholar
Huber, J.S., Moses, W.W., Derenzot, S.E., Hot, M.H., Andreacoe, M.S., Pauluse, M.J., and Nutte, R.: Characterization of a 64 channel PET detector using photodiodes for crystal identification. IEEE Trans. Nucl. Sci. 44(3), 1197 (1997).CrossRefGoogle Scholar
Schmand, M., Eriksson, L., Casey, M.E., Andreaco, M.S., Melcher, C., Wienhard, K., Flugge, G., and Nutt, R.: Performance results of a new DOI detector block for a high resolution PET-LSO research tomograph HRRT. IEEE Trans. Nucl. Sci. 45(6), 3000 (1998).CrossRefGoogle Scholar
Loutts, G.B., Zagumennyi, A.I., Lavrishchev, S.V., Zavartsev, Y.D., and Studenikin, P.A.: Czochralski growth and characterization of (Lu1-xGdx)2SiO5 single crystals for scintillators. J. Cryst. Growth 174, 331 (1997).CrossRefGoogle Scholar
Melcher, C.L., Schmand, M., Eriksson, M., Riksson, L.E., Casey, M., Nutt, R., Lefaucheur, J.L., and Chai, B.: Scintillation properties of LSO:Ce boules. IEEE Trans. Nucl. Sci. 47(3), 965 (2000).CrossRefGoogle Scholar
Bescher, E., Robson, S.R., Mackenzie, J.D., Patt, B., Iwanczyk, J., and Hoffman, E.J.: New lutetium silicate scintillators. J. Sol-Gel Sci. Technol. 19, 325 (2000).CrossRefGoogle Scholar
Mansuy, C., Mahiou, R., and Nedelec, J.M.: A new sol-gel route to Lu2SiO5 (LSO) scintillator: Powders and thin films. Chem. Mater. 15, 3242 (2003).CrossRefGoogle Scholar
Wang, Y., He, Q., and Chu, B.: Synthesis and characterization of Ce-doped Lu2SiO5 powders by the solid-state reaction with Li2SO4 flux. J. Alloys Compd. 479(1–2), 704 (2009).CrossRefGoogle Scholar
Lee, J.K., Muenchausen, R.E., Lee, J-S., Jia, Q.X., Nastasi, M., Valdez, J.A., Bennett, B.L., Cooke, D.W., and Lee, S.Y.: Structure and optical properties of Lu2SiO5:Ce phosphor thin films. Appl. Phys. Lett. 89(10), 101905 (2006).CrossRefGoogle Scholar
Shen, S-Q., Ma, Q., Xu, Z-B., Xie, J-J., Shi, Y., Wang, J., and Ai, F.: Fabrication, structure and luminescence properties of polycrystalline Tb3+-doped Lu2SiO5 films by Pechini sol–gel method. Appl. Surf. Sci. 258(5), 1768 (2011).CrossRefGoogle Scholar
Lempicki, A., Brecher, C., Lingertat, H., Miller, S.R., Glodo, J., and Sarin, V.K.: A ceramic version of the LSO scintillator. IEEE Trans. Nucl. Sci. 55(3), 1148 (2008).CrossRefGoogle Scholar
Lin, T., Xu, Z-B., Deng, L-Y., Ren, Y-Y., Shi, Y., and Xie, J-J.: Spark plasma sintering of Ce3+:Lu2SiO5 scintillation ceramics and its luminescent characteristics. J. Inorg. Mater. 26(11), 1210 (2011).CrossRefGoogle Scholar
Wang, Y., Loef, E.V., Rhodes, W.H., Glodo, J., Brecher, C., Nguyen, L., Lempicki, A., Baldoni, G., Higgins, W.M., and Shah, K.S.: Lu2SiO5:Ce optical ceramic scintillator for PET. IEEE Trans. Nucl. Sci. 56(3), 887 (2009).CrossRefGoogle Scholar
Xie, J., Shi, Y., Fan, L., and Xu, Z.: Microstructure and luminescent properties of Ce:Lu2SiO5 ceramic scintillator by spark plasma sintering. Opt. Mater. 35(4), 744 (2012).CrossRefGoogle Scholar
Xie, J., Lin, T., Shi, Y., Song, G., and Wu, W.: Luminescence properties of nano-sized Lu2SiO5:Ce phosphors prepared by sol-gel method. J. Chin. Ceram. Soc. 38(10), 1931 (2010).Google Scholar
Li, J.-G., Ikegami, T., and Mori, T.: Fabrication of transparent, sintered Sc2O3 ceramics. J. Am. Ceram. Soc. 88(4), 817 (2005).CrossRefGoogle Scholar
Cooke, D.W., Bennett, B.L., McClellan, K.J., Roper, J.M., Whittaker, M.T., and Portis, A.M.: Electron-lattice coupling parameters and oscillator strengths of cerium-doped lutetium oxyorthosilicate. Phys. Rev. B 61(18), 11973 (2000).CrossRefGoogle Scholar
Shi, C., Liu, B., Zhang, G., Qi, Z., Ren, G., Tao, Y., and Xu, J.: Temperature dependence of luminescence from scintillator LSO:Ce under VUV excitation. J. Electron Spectrosc. Relat. Phenom. 144147, 905 (2005).CrossRefGoogle Scholar
Suzuki, H., Tombrello, T.A., Melcher, C.L., and Schweitzer, J.S.: Light emission mechanism of Lu2(SiO4)O:Ce. IEEE Trans. Nucl. Sci. 40(4), 380 (1993).CrossRefGoogle Scholar
Liu, B., Shi, C., Yin, M., Fu, Y., Zhang, G., and Ren, G.: Luminescence and energy transfer processes in Lu2SiO5:Ce3+ scintillator. J. Lumin. 117(2), 129 (2006).CrossRefGoogle Scholar
Ren, G., Qin, L., Lu, S., and Li, H.: Scintillation characteristics of lutetium oxyorthosilicate (Lu2SiO5:Ce) crystals doped with cerium ions. Nucl. Instrum. Methods Phys. Res., Sect. A 531(3), 560 (2004).CrossRefGoogle Scholar
Roy, S., Lingertat, H., Brecher, C., and Sarin, V.K.: Spectroscopic and transmittance properties of fine grained Ce3+ doped lutetium oxyorthosilicate. IEEE Trans. Nucl. Sci. 59(5), 2587 (2012).CrossRefGoogle Scholar