Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:09:26.155Z Has data issue: false hasContentIssue false

Conductive LaNiO3 Electrode Grown by Pulsed Laser Ablation on Si Substrate

Published online by Cambridge University Press:  31 January 2011

Li Sun
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
Tao Yu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
Yan-Feng Chen
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
Jun Zhou
Affiliation:
Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
Nai-Ben Ming
Affiliation:
National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
Get access

Abstract

Using the pulsed laser ablation (PLA) technique, conductive LaNiO3 thin films have been successfully grown on (001) Si substrates. The XRD θ-2θ scan patterns indicate a preferential (110) orientation, and the electron probe microanalyzer (EPMA) investigations show that the three elements La, Ni, and O distribute uniformly in the films. The resistivity of the as-deposited LaNiO3 films display a metallic character. Polycrystalline PbTiO3films are deposited by metalorganic chemical vapor deposition (MOCVD) on these LaNiO3 electrodes. Ferroelectricity measurements of the PbTiO3/LaNiO3 heterostructure prove LaNiO3 to be a promising electrode material in the integration of ferroelectrics and Si wafer.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ramesh, R., Inam, A., Chan, W. K., Tillerot, F., Wilkens, B., Chen, C. C., Sands, T., Tarascon, J. M., and Keramidas, V. G., Appl. Phys. Lett. 59, 3542 (1991).CrossRefGoogle Scholar
2.Dat, R., Lichtenwalner, D. J., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 64, 2673 (1994).CrossRefGoogle Scholar
3.Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V. G., Haakensaasen, R., and Fork, D. K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
4.Watanabe, Y., Tanamura, M., Matsumoto, Y., Asami, H., and Kato, A., Appl. Phys. Lett. 66, 299 (1995).CrossRefGoogle Scholar
5.Swartz, S. L. and Wood, V. E., Condensed Matter News 1 (5), 4 (1992).Google Scholar
6.Scott, J. F. and Paz de Araujo, C. A., Science 246, 1400 (1989).CrossRefGoogle Scholar
7.Vest, R., Ferroelectrics 102, 53 (1990).CrossRefGoogle Scholar
8.Nakamura, T., Nakao, Y., Kamisawa, A., and Takasu, H., Appl. Phys. Lett. 65, 1522 (1994).CrossRefGoogle Scholar
9.Sameshima, K., Nakamura, T., Kamisawa, A., Atsuki, T., Soyama, N., and Ogi, K., J. Appl. Phys. 32, 4144 (1993).CrossRefGoogle Scholar
10.Eom, C. B., Cava, R. J., Fleming, R. M., Phillips, J. M., van Dover, R. B., Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F., Jr., Science 258, 1766 (1992).CrossRefGoogle Scholar
11.Satyalakshmi, K. M., Mallya, R. M., Ramanathan, K. V., Wu, X. D., Brainard, B., Gautier, D. C., Vasanthacharya, N. Y., and Hegde, M. S., Appl. Phys. Lett. 62, 1233 (1993).CrossRefGoogle Scholar
12.Hegde, M. S., Satyalakshmi, K. M., Mallya, R. M., Rajeswari, M., and Zhang, H., J. Mater. Res. 9, 898 (1994).CrossRefGoogle Scholar
13.Ranchinger, W. A., J. Sci. Instrum. 25, 254 (1948).CrossRefGoogle Scholar
14.Chen, Y. F., Chen, J. X., Sun, L., Yu, T., Li, P., Ming, N. B., and Shi, L. J., J. Cryst. Growth 146, 624 (1995).CrossRefGoogle Scholar
15.Chen, Y. F., Yu, T., Chen, J. X., Sun, L., Li, P., and Ming, N. B., Appl. Phys. Lett. 66, 148 (1995).CrossRefGoogle Scholar
16.Sun, L., Chen, Y. F., Yu, T., Chen, J. X., and Ming, N. B., J. Phys.: Condensed Matter 7, 6537 (1995).Google Scholar
17.Swartz, S. L. and Wood, V. E., Condensed Matter News 1 (5), 4 (1992).Google Scholar
18.Bai, G. R., Chang, H. L. M., Foster, C. M., Shen, Z., and Lam, D. J., J. Mater. Res. 9, 156 (1994).CrossRefGoogle Scholar
19.de Keijser, M., Dormans, G. J. M., Cillessen, J. F. M., deLeeuw, D. M., and Zandbergen, H. W. H., Appl. Phys. Lett. 58, 2636 (1991).CrossRefGoogle Scholar
20.Sun, L., Chen, Y. F., Ma, W. H., Wang, L. W., Yu, T., Zhang, M. S., and Ming, N. B., Appl. Phys. Lett. 68, 3728 (1996).CrossRefGoogle Scholar
21.Bolm, P. W. M., Wolf, R. M., Cillessen, J. F. M., and Krijn, M. P. C. M., Phys. Rev. Lett. 73, 2107 (1994).CrossRefGoogle Scholar