Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T13:06:45.730Z Has data issue: false hasContentIssue false

Concentration effect of BMIMTf on P(VdF-HFP)/MgTf-based solid polymer electrolyte system

Published online by Cambridge University Press:  09 March 2012

S. Ramesh*
Affiliation:
Centre for Ionics University Malaya, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Soon-Chien Lu
Affiliation:
Centre for Surface Chemistry and Catalysis, Faculty of Bioengineering Science, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Solid polymer electrolytes (SPEs) with poly(vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] as polymer host, doped with magnesium trifluoromethanesulfonate (MgTf) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMTf) have been synthesized via solution casting method. This P(VdF-HFP)/MgTf/BMIMTf-based SPE achieves ∼3 × 10−3 and ∼7 × 10−3 S·cm−1 at 30 and 80 °C, respectively, with 75 part by weight (pbw) of BMIMTf. At the same time, they are also examined by means of frequency-dependent conductivity, dielectric permittivity, and dielectric modulus studies. Scanning electron microscopy reveals drastic morphological changes on SPE with small amount of BMIMTf. Even though it gradually changes back to its undoped state with higher concentration, it appears to be swollen. Examination on relationship between ionic conductivity and crystallinity by differential scanning calorimetry technique shows inconsistency at concentration higher than 75 pbw. This observation is related to greater ion–ion interaction due to excessive BMIMTf. Photoluminescence is also used to detect structural alterations in the local environment of SPE.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Silva, R.A., Silva, G.G., Moreira, R.L., and Pimenta, M.A.: The effects of salt concentration on cation complexation in triblock-polyether electrolyte. Phys. Chem. Chem. Phys. 5, 2424 (2003).CrossRefGoogle Scholar
2.Wu, I-D. and Chang, F-C.: Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48, 989 (2007).Google Scholar
3.Noto, V.D., Vittadello, M., Lavina, S., Fauri, M., and Biscazzo, S.: Mechanism of ionic conductivity in poly(ethyleneglycol 400)/(LiCl)x electrolytic complexes: Studies based on electrical spectroscopy. J. Phys. Chem. B 105, 4584 (2001).CrossRefGoogle Scholar
4.Brazier, A., Appetecchi, G.B., Passerini, S., Vuk, A.S., Orel, R., Donsanti, F., and Decker, F.: Ionic liquids in electrochromic devices. Electrochim. Acta 52, 4792 (2007).CrossRefGoogle Scholar
5.Li, Z.H., Zhang, H.P., Zhang, P., Li, G.C., Wu, Y.P., and Zhou, X.D.: Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J. Membr. Sci. 322, 418 (2008).CrossRefGoogle Scholar
6.Lee, K-M., Suryanarayanan, V., and Ho, K-C.: A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene). J. Power Sources 185, 1605 (2008).CrossRefGoogle Scholar
7.Reiter, J., Krejza, O., and Sedlaříková, M.: Electrochemical devices employing methacrylate-based polymer electrolytes. Sol. Energy Mater. Sol. Cells 93, 249 (2009).CrossRefGoogle Scholar
8.Jeong, S-K., Jo, Y-K., and Jo, N-J.: Decoupled ion conduction mechanism of poly(vinyl alcohol) based Mg-conducting solid polymer electrolyte. Electrochim. Acta 52, 1549 (2006).CrossRefGoogle Scholar
9.Perera, K., Dissanayake, M.A.K.L., and Bandaranayake, P.W.S.K.: Ionic conductivity of a gel polymer electrolyte based on Mg(ClO4)2 and polyacrylonitrile (PAN). Mater. Res. Bull. 39, 1745 (2004).Google Scholar
10.Kumar, G.G. and Munichandraiah, N.: Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte. J. Power Sources 102, 46 (2001).CrossRefGoogle Scholar
11.Vieira, D.F., Avellaneda, C.O., and Pawlicka, A.: Conductivity study of a gelatine-based polymer electrolyte. Electrochim. Acta 53, 1404 (2007).CrossRefGoogle Scholar
12.Fuller, J., Breda, A.C., and Carlin, R.T.: Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J. Electroanal. Chem. 459, 29 (1998).Google Scholar
13.Marcilla, R., Alcaide, F., Sardon, H., Pomposo, J.A., Pozo-Gonzalo, C., and Mecerreyes, D.: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochemical devices. Electrochem. Commun. 8, 482 (2006).CrossRefGoogle Scholar
14.Reiter, J., Vondrák, J., Michálek, J., and Mićka, Z.: Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim. Acta 52, 1398 (2006).CrossRefGoogle Scholar
15.Singh, B., Hundal, M.S., Park, G-G., Park, J-S., Lee, W-Y., Kim, C-S., Yamada, K., and Sekhon, S.S.: Non-aqueous polymer electrolytes containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium tetrafluoroborate. Solid State Ionics 178, 1404 (2007).CrossRefGoogle Scholar
16.Singh, P.K., Kim, K-W., and Rhee, H-W.: Electrical, optical and photoelectrochemical studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid. Electrochem. Commun. 10, 1769 (2008).Google Scholar
17.Chen, D., Zhang, Q., Wang, G., Zhang, H., and Li, J.H.: A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells. Electrochem. Commun. 9, 2755 (2007).Google Scholar
18.Ramesh, S. and Chai, M.F.: Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)–lithium triflate polymer electrolytes. Mater. Sci. Eng., B 139, 240 (2007).CrossRefGoogle Scholar
19.Reddy, M.J. and Chu, P.P.: Effect of Mg2+ on PEO morphology and conductivity. Solid State Ionics 149, 115 (2002).CrossRefGoogle Scholar
20.Reddy, M.J. and Chu, P.P.: Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J. Power Sources 109, 340 (2002).Google Scholar
21.Gregorio, R. Jr. and Borges, D.S.: Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer 49, 4009 (2008).CrossRefGoogle Scholar
22.Khiar, A.S.A., Puteh, R., and Arof, A.K.: Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373, 23 (2006).CrossRefGoogle Scholar
23.Xu, J.J., Ye, H., and Huang, J.: Novel zinc ion conducting polymer gel eletrolytes based on ionic liquids. Electrochem. Commun. 7, 1309 (2005).CrossRefGoogle Scholar
24.Ramesh, S. and Wong, K.C.: Conductivity, dielectric behaviour and thermal stability studies of lithium ion dissociation in poly(methyl methacrylate)-based gel polymer electrolytes. Ionics 15, 249 (2009).CrossRefGoogle Scholar
25.Venkateswarlu, M. and Satyanarayana, N.: AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries. Mater. Sci. Eng., B 54, 189 (1998).CrossRefGoogle Scholar
26.Dygas, J.R., Misztal-Faraj, B., Florjańczyk, Z., Krok, F., Marzantowicz, M., and Zygadło-Monikowska, E.: Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexes. Solid State Ionics 157, 249 (2003).CrossRefGoogle Scholar
27.Karan, N.K., Pradhan, D.K., Thomas, R., Natesan, B., and Katiyar, R.S.: Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics 179, 689 (2008).CrossRefGoogle Scholar
28.Ramesh, S. and Ng, K.Y.: Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr. Appl. Phys. 9, 329 (2009).CrossRefGoogle Scholar
29.Baskaran, R., Selvasekarapandian, S., Hirankumar, G., and Bhuvaneswari, M.S.: Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)–N,N–dimethylformamide–LiClO4 polymer gel electrolytes. J. Power Sources 134, 235 (2004).CrossRefGoogle Scholar
30.Awadhia, A., Patel, S.K., and Agrawal, S.L.: Dielectric investigations in PVA based gel electrolytes. Prog. Cryst. Growth Charact. Mater. 52, 61 (2006).CrossRefGoogle Scholar
31.Buraidah, M.H., Teo, L.P., Majid, S.R., and Arof, A.K.: Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404, 1373 (2009).CrossRefGoogle Scholar
32.Ramesh, S., Tai, F.Y., and Chia, J.S.: Conductivity and FTIR studies on PEO–LiX [X: CF3SO3, SO42−] polymer electrolytes. Spectrochim. Acta Part A 69, 670 (2008).CrossRefGoogle ScholarPubMed
33.Osman, Z., Ibrahim, Z.A., and Arof, A.K.: Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydr. Polym. 44, 167 (2001).CrossRefGoogle Scholar
34.Mishra, R., Baskaran, N., Ramakrishna, P.A., and Rao, K.J.: Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112, 261 (1998).CrossRefGoogle Scholar
35.Yahya, M.Z.A. and Arof, A.K.: Conductivity and x-ray photoelectron studies on lithium acetate doped chitosan films. Carbohydr. Polym. 55, 95 (2004).Google Scholar
36.Elmér, A.M., Wesslén, B., Sommer-Larsen, P., West, K., Hassender, H., and Jannasch, P.: Ion conductive electrolyte membranes based on co-continuous polymer blends. J. Mater. Chem. 13, 2168 (2003).CrossRefGoogle Scholar
37.Li, G.C., Zhang, P., Zhang, H.P., Yang, L.C., and Wu, Y.P.: A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochem. Commun. 10, 1883 (2008).Google Scholar
38.Abbrent, S., Plestil, J., Hlavata, D., Lindgren, J., Tegenfeldt, J., and Wendsjö, Å.: Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407 (2001).CrossRefGoogle Scholar
39.Aravindan, V., Vickramen, P., and Prem Kumar, T.: Polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. J. Non-Cryst. Solids 354, 3451 (2008).CrossRefGoogle Scholar
40.Lee, J.S., Nohira, T., and Hagiwara, R.: Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell. J. Power Sources 171, 536 (2007).CrossRefGoogle Scholar
41.Ji, K-S., Moon, H-S., Kim, J-W., and Park, J-W.:Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. J. Power Sources 117, 124 (2003).Google Scholar
42.Choi, S.W., Jo, S.M., Lee, W.S., and Kim, Y-R.: An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv. Mater. 15, 2027 (2003).CrossRefGoogle Scholar
43.Singh, P.K., Kim, K-W., and Rhee, H-W.: Development of characterization of ionic liquid doped solid polymer electrolyte membrane for battery efficiency. Synth. Met. 159, 1538 (2009).Google Scholar
44.Costa, L.T., Lavall, R.L., Borges, R.S., Rieumont, J., Silva, G.G., and Ribeiro, M.C.C.: Polymer electrolytes based on poly(ethylene glycol) dimethyl ether and the ionic liquid 1-butyl-3-methylimidazolium hexaflurophosphate: Preparation, physico-chemical characterization, and theoretical study. Electrochim. Acta 53, 1568 (2007).CrossRefGoogle Scholar
45.Park, U-S., Hong, Y-J., and Oh, S.M.: Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (PAN)-based polymer gel electrolytes. Electrochim. Acta 41, 849 (1996).CrossRefGoogle Scholar
46.Jeon, S.M., Bae, S.C., Turner, J., and Granick, S.: Microviscosity of an ion-conducting polymer probed by fluorescence depolarization and dielectric spectroscopy. Polymer 43, 4651 (2002).CrossRefGoogle Scholar
47.Waldow, D.A., Ediger, M.D., Yamaguchi, Y., Matsushita, Y., and Noda, I.: Viscosity dependence of the local segmental dynamics of anthracene-labeled polystyrene in dilute solution. Macromolecules 24, 3147 (1991).CrossRefGoogle Scholar
48.Anandan, S. and Radhakrishna, S.: Luminescence spectroscopy of some polymeric materials, in Polymeric Materials, edited by Radhakrishna, S. and Arof, A.K. (Narosa Publishing House, India 1998), pp. 181189.Google Scholar