Article contents
Computer simulation of target link explosion in laser programmable redundancy for silicon memory
Published online by Cambridge University Press: 31 January 2011
Abstract
Pulses of Q-switched Nd-YAG radiation have been used to remove polysilicon target links during the implementation of laser programmable redundancy in the fabrication of silicon memory. The link is encapsulated by transparent dielectric films that give rise to important optical interference effects modifying the laser flux absorbed by the link and the silicon substrate. Estimates of these effects are made on the basis of classical plane-wave procedures. Thermal evolution of the composite structure is described in terms of a finite-difference form of the three-dimensional heat diffusion equation with a heat generation rate having a Gaussian spatial distribution of intensity and temporal shapes characteristic of commercial lasers. Temperature-dependent thermal diffusivity and melting of the polysilicon link are included in the computer modeling. The calculations account for the discontinuous change in the link absorption coefficient at the transition temperature. A threshold temperature and corresponding pressure, sufficiently high to rupture the dielectric above the link and initiate the removal process, are estimated by treating the molten link as a hard-sphere fluid. Numerical results are presented in the form of three-dimensional temperature distributions for 1.06 and 0.53 μm radiation with pulse energies 3.5 and 0.15μJ, respectively. Similarities and differences between heating effects produced by long (190 ns FWHM/740 ns duration) and short (35 ns FWHM/220 ns duration) pulses are pointed out.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1986
References
- 11
- Cited by