Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T10:56:58.289Z Has data issue: false hasContentIssue false

Computational simulation of threshold displacement energies of GaAs

Published online by Cambridge University Press:  14 February 2017

Nanjun Chen
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Sean Gray
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
Efrain Hernandez-Rivera
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA; and WMRD, US Army Research Laboratory, APG, MD 21005, USA
Danhong Huang
Affiliation:
US Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, NM 87117, USA
Paul D. LeVan
Affiliation:
US Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, NM 87117, USA
Fei Gao*
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Classical molecular dynamics (MD), along with a bond-order potential for GaAs, has been used to study threshold displacement energies (E d) of Ga and As recoils. Considering the crystallographic symmetry of GaAs, recoil events are confined in four unit stereographic triangles. To investigate the displacement energy’s dependence on crystallographic orientation, more than 3600 recoil events were simulated to uniformly sample values of E d. Various defect configurations produced at these low energy recoils and the separation distances of Frenkel pairs were quantified and outlined. For both Ga and As, the minimum, $E_{\rm{d}}^{{\rm{min}}}$ , is found to be 8 eV, but the maxima, $E_{\rm{d}}^{{\rm{max}}}$ , are 22 and 28 eV for Ga and As, respectively. The distribution of E d within unit stereographic triangles indicates that E d shows a weak dependence on the recoil directions, in contrast to other semiconductors. The average threshold displacement energy is 13 ± 1 eV, which is in excellent agreement with available experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Susan B. Sinnott

References

REFERENCES

Claeys, C. and Eddy, S.: Radiation Effects in Advanced Semiconductor Materials and devices: Opto-Electronic Components for Space (Springer, Berlin, Heidelberg, 2002); pp. 281330.Google Scholar
Dyksik, M., Motyka, M., and Rudzinski, W.R.: Optical properties of active regions in terahertz quantum cascade lasers. J. Infrared, Millimeter, Terahertz Waves 37, 710 (2016).Google Scholar
Mayer, J.W. and Lau, S.S.: Electronic Materials Science for Integrated Circuits in Si and GaAs (MacMillan Press, New York, 1990).Google Scholar
Radziemska, E.: Thermal performance of Si and GaAs based solar cells and modules: A review. Prog. Energy Combust. Sci. 29, 407 (2003).Google Scholar
Eyderman, S. and Sajeev, J.: Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells. Sci. Rep. 6, 28303 (2016).Google Scholar
Alim, M.A., Ali, A.R., and Christophe, G.: Small signal model parameters analysis of GaN and GaAs based HEMTs over temperature for microwave applications. Solid-State Electron. 119, 11 (2016).Google Scholar
Schermer, J.J., Mulder, P., Bauhuis, G.J., and Larsen, P.K.: Thin-film GaAs epitaxial lift-off solar cells for space applications. Prog. Photovoltaics 13, 587 (2005).Google Scholar
Messenger, S.R., Burke, E.A., Walters, R.J., Warner, J.H., and Summers, G.P.: Effect of omnidirectional proton irradiation on shielded solar cells. IEEE Trans. Nucl. Sci. 53, 3771 (2006).Google Scholar
Bjorkas, C., Nordlund, K., and Arstila, K.: Damage production in GaAs and GaAsN induced by light and heavy ions. J. Appl. Phys. 100, 053516 (2006).Google Scholar
Karaseov, P.A., Karabeshkin, K.V., Mongo, E.E., and Titov, A.L.: Experimental study and MD simulation of damage formation in GaN under atomic and molecular ion irradiation. Vacuum 129, 166 (2016).Google Scholar
Movla, H., Mohammad, B., and Seyed, V.S.: Influence of α particle radiation on the structural and electronic properties of thin film GaAs solar cells: A simulation study. Optik 127, 3844 (2016).Google Scholar
Ionascut, N.A., Carlone, C., and Houdayer, A.: Radiation hardness of gallium nitride. IEEE Trans. Nucl. Sci. 49, 2733 (2002).Google Scholar
Gao, F., Weber, W.J., and Devanathan, R.: Defect production, multiple ion–solid interactions and amorphization in SiC. Nucl. Instrum. Methods Phys. Res., Sect. B 191, 487 (2002).Google Scholar
Lucas, G. and Laurent, P.: Ab initio molecular dynamics calculations of threshold displacement energies in silicon carbide. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 161202 (2005).Google Scholar
Schick, J.T., Morgan, C.G., and Papoulias, P.: First-principles study of as interstitials in GaAs: Convergence, relaxation, and formation energy. Phys. Rev. B: Condens. Matter Mater. Phys. 66, 195302 (2002).Google Scholar
Lehmann, B. and Braunig, D.: A deep level transient spectroscopy variation for the determination of displacement threshold energies in GaAs. J. Appl. Phys. 73, 2891 (1993).Google Scholar
Barry, A.L., Maxseiner, R., and Wojcik, R.: An improved displacement damage monitor LED. IEEE Trans. Nucl. Sci. 37, 1726 (1990).Google Scholar
Nordlund, K., Peltola, J., Nord, J., and Keinonen, J.: Defect clustering during ion irradiation of GaAs: Insight from molecular dynamics simulations. J. Appl. Phys. 90, 1710 (2001).Google Scholar
Albe, K., Nordlund, K., Nord, J., and Kuronen, A.: Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs. Phys. Rev. B: Condens. Matter Mater. Phys. 66, 35205 (2002).Google Scholar
Smith, R.: A semi-empirical many-body interatomic potential for modelling dynamical processes in gallium arsenide. Nucl. Instrum. Methods Phys. Res., Sect. B 67, 335 (1992).Google Scholar
Sayed, M., Jefferson, J.H., Walker, A.N., and Cullis, A.G.: Molecular dynamics simulations of implantation damage and recovery in semiconductors. Nucl. Instrum. Methods Phys. Res., Sect. B 102, 218 (1995).Google Scholar
Nordlund, K. and Kuronen, A.: Non-equilibrium properties of GaAs interatomic potentials. Nucl. Instrum. Methods Phys. Res., Sect. B 159, 183 (1999).Google Scholar
Zollo, G., Tarus, J., and Nieminen, R.M.: Reliability of analytical potentials for point-defect simulation in GaAs. J. Phys.: Condens. Matter 16, 3923 (2004).Google Scholar
Gao, F., Bacon, D.J., and Ackland, G.J.: Point-defect and threshold displacement energies in Ni3Al I. Point-defect properties. Philos. Mag. A 67, 275 (1993).Google Scholar
Nordlund, K., Wallenius, J., and Malerba, L.: Molecular dynamics simulations of threshold displacement energies in Fe. Nucl. Instrum. Methods Phys. Res., Sect. B 246, 322 (2006).Google Scholar
Sayed, M., Jefferson, J.H., Walker, A.N., and Cullis, A.G.: Computer simulation of atomic displacements in Si, GaAs, and AlAs. Nucl. Instrum. Methods Phys. Res., Sect. B 102, 232 (1995).Google Scholar
Gao, F., Xiao, H., Zu, X., Posselt, M., and Weber, W.J.: Defect-enhanced charge transfer by ion-solid interactions in SiC using large-scale ab initio molecular dynamics simulations. Phys. Rev. Lett. 103, 027405 (2009).Google Scholar
Gao, F., Bacon, D.J., Flewitt, P.E., and Lewis, T.A.: A molecular dynamics study of temperature effects on defect production by displacement cascades in α-iron. J. Nucl. Mater. 249, 77 (1997).Google Scholar
Biersack, J.P. and Ziegler, J.F.: Refined universal potentials in atomic collisions. Nucl. Instrum. Methods 194, 93 (1982).Google Scholar
Uegami, K. and Tamamura, K.: Consequence of orientation on the single crystal diamond cutting tool. In Progress in Precision Engineering (Springer, Berlin Heidelberg, 1991); p. 392.Google Scholar
Holmström, E., Kuronen, A., and Nordlund, K.: Threshold defect production in silicon determined by density functional theory molecular dynamics simulations. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 45202 (2008).Google Scholar