Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T20:30:12.648Z Has data issue: false hasContentIssue false

Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries

Published online by Cambridge University Press:  30 August 2016

Rong Xu
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA
Luize Scalco de Vasconcelos
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA
Kejie Zhao*
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Mechanical reliability is a critical issue in all forms of energy conversion, storage, and harvesting. In Li-ion batteries, mechanical degradation caused by the repetitive swelling and shrinking of electrodes upon lithiation cycles is now well recognized; however, the impact of mechanical stresses on Li transport and hence the capacity of batteries is less obvious and underestimated. In particular, the stress field within the heterogeneous electrodes is complex, making the characterization of the chemomechanical behaviors of electrodes a challenging task. We develop a finite element program that computes the coupled Li diffusion and stresses in three-dimensional composite electrodes. We employ the reconstructed models of both cathode and anode materials to investigate the mechanical interactions of the constituents and their influence on the accessible capacity. The state of charge in the percolated particles is highly inhomogeneous regulated by the stress field. An ample space of design is open for the optimization of the capacity and mechanical performance of electrodes by tuning the size, shape, and pattern of active particles, as well as the properties of the inactive matrix.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armand, M. and Tarascon, J.M.: Building better batteries. Nature 451, 652 (2008).CrossRefGoogle ScholarPubMed
Whittingham, M.S.: Materials challenges facing electrical energy storage. MRS Bull. 33, 411 (2008).CrossRefGoogle Scholar
Tarascon, J.M. and Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).CrossRefGoogle ScholarPubMed
Scrosati, B. and Garche, J.: Lithium batteries: Status, prospects and future. J. Power Sources 195, 2419 (2010).CrossRefGoogle Scholar
Nitta, N., Wu, F., Lee, J.T., and Yushin, G.: Li-ion battery materials: Present and future. Mater. Today 18, 252 (2015).CrossRefGoogle Scholar
Mukhopadhyay, A. and Sheldon, B.W.: Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58 (2014).CrossRefGoogle Scholar
McDowell, M.T., Xia, S., and Zhu, T.: The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech. Lett. (2016). doi: 10.1016/j.eml.2016.03.004.CrossRefGoogle Scholar
Christensen, J. and Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019 (2006).CrossRefGoogle Scholar
Thackeray, M.M.: Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142, 2558 (1995).CrossRefGoogle Scholar
Malavé, V., Berger, J.R., Zhu, H., and Kee, R.J.: A computational model of the mechanical behavior within reconstructed Li x CoO2 Li-ion battery cathode particles. Electrochim. Acta 130, 707 (2014).CrossRefGoogle Scholar
Zaghib, K., Julien, C.M., and Prakash, J.: Proceedings of the International Symposium: New trends in intercalation compounds for energy storage and conversion (The Electrochemical Society, Pennington, 2003).Google Scholar
Courtney, I.A. and Dahn, J.R.: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).CrossRefGoogle Scholar
Zhao, K., Pharr, M., Vlassak, J.J., and Suo, Z.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010).CrossRefGoogle Scholar
Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., and Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).CrossRefGoogle ScholarPubMed
Choi, J.W., Cui, Y., and Nix, W.D.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717 (2011).Google Scholar
Zhao, K., Pharr, M., Hartle, L., Vlassak, J.J., and Suo, Z.: Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures. J. Power Sources 218, 6 (2012).CrossRefGoogle Scholar
Lee, S.W., Lee, H.W., Nix, W.D., Gao, H., and Cui, Y.: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6, 7533 (2015).CrossRefGoogle ScholarPubMed
Zhao, K., Wang, W.L., Gregoire, J., Pharr, M., and Suo, Z.: Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study. Nano Lett. 11, 2962 (2011).CrossRefGoogle ScholarPubMed
Zhao, K., Tritsaris, G.A., Pharr, M., Wang, W.L., Okeke, O., Suo, Z., Vlassak, J.J., and Kaxiras, E.: Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12, 4397 (2012).CrossRefGoogle ScholarPubMed
Brassart, L. and Suo, Z.: Reactive flow in solids. J. Mech. Phys. Solids 61, 61 (2013).CrossRefGoogle Scholar
Choi, J.W., McDonough, J., Jeong, S., Yoo, J.S., Chan, C.K., and Cui, Y.: Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 10, 1409 (2010).CrossRefGoogle ScholarPubMed
Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T., and Huang, J.Y.: Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991 (2011).CrossRefGoogle ScholarPubMed
Zhao, K., Pharr, M., Wan, Q., Wang, W.L., Kaxiras, E., Vlassak, J.J., and Suo, Z.: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238 (2012).CrossRefGoogle Scholar
McDowell, M.T., Lee, S.W., Wang, C., Nix, W.D., and Cui, Y.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034 (2012).CrossRefGoogle ScholarPubMed
Yang, H., Liang, W., Guo, X., Wang, C.M., and Zhang, S.: Strong kinetics-stress coupling in lithiation of Si and Ge anodes. Extreme Mech. Lett. 2, 1 (2015).CrossRefGoogle Scholar
Sandu, G., Brassart, L., Gohy, J.F., Pardoen, T., Melinte, S., and Vlad, A.: Surface coating mediated swelling and fracture of silicon nanowires during lithiation. ACS Nano 8, 9427 (2014).CrossRefGoogle ScholarPubMed
Verbrugge, M.W. and Koch, B.J.: Modeling lithium intercalation of singlefiber carbon microelectrodes. J. Electrochem. Soc. 143, 600 (1996).CrossRefGoogle Scholar
Christensen, J. and Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293 (2006).CrossRefGoogle Scholar
Zhang, X., Shyy, W., and Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007).CrossRefGoogle Scholar
Cheng, Y.T. and Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453 (2009).CrossRefGoogle Scholar
Golmon, S., Maute, K., Lee, S.H., and Dunn, M.L.: Stress generation in silicon particles during lithium insertion. Appl. Phys. Lett. 97, 033111 (2010).CrossRefGoogle Scholar
Haftbaradaran, H., Xiao, X., Verbrugge, M.W., and Gao, H.: Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. J. Power Sources 206, 357 (2012).CrossRefGoogle Scholar
Gao, Y. and Zhou, M.: Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes. J. Appl. Phys. 109, 014310 (2011).CrossRefGoogle Scholar
Bower, A.F., Guduru, P.R., and Sethuraman, V.A.: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804 (2011).CrossRefGoogle Scholar
Brassart, L., Zhao, K., and Suo, Z.: Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. Int. J. Solids Struct. 50, 1120 (2013).CrossRefGoogle Scholar
Cui, Z., Gao, F., and Qu, J.: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280 (2012).CrossRefGoogle Scholar
Yang, H., Huang, S., Huang, X., Fan, F., Liang, W., Liu, X.H., Chen, L.Q., Huang, J.Y., Li, J., Zhu, T., and Zhang, S.: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 1953 (2012).CrossRefGoogle ScholarPubMed
Yang, H., Fan, F., Liang, W., Guo, X., Zhu, T., and Zhang, S.: A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349 (2014).CrossRefGoogle Scholar
Jia, Z. and Li, T.: Stress-modulated driving force for lithiation reaction in hollow nano-anodes. J. Power Sources 275, 866 (2015).CrossRefGoogle Scholar
Jia, Z. and Li, T.: Intrinsic stress mitigation via elastic softening during two-step electrochemical lithiation of amorphous silicon. J. Mech. Phys. Solids 91, 278 (2016).CrossRefGoogle Scholar
de Vasconcelos, L.S., Xu, R., Li, J., and Zhao, K.: Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries. Extreme Mech. Lett. (2016). doi: 10.1016/j.eml.2016.03.002.Google Scholar
Hutzenlaub, T., Thiele, S., Zengerle, R., and Ziegler, C.: Three-dimensional reconstruction of a LiCoO2 Li-ion battery cathode. Electrochem. Solid-State Lett. 15, A33 (2011).CrossRefGoogle Scholar
Hutzenlaub, T., Thiele, S., Paust, N., Spotnitz, R., Zengerle, R., and Walchshofer, C.: Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode. Electrochim. Acta 115, 131 (2014).CrossRefGoogle Scholar
Ebner, M. and Wood, V.: Tool for tortuosity estimation in lithium ion battery porous electrodes. J. Electrochem. Soc. 162, A3064 (2015).CrossRefGoogle Scholar
Lim, C., Yan, B., Yin, L., and Zhu, L.: Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim. Acta 75, 279 (2012).CrossRefGoogle Scholar
Chung, M.D., Seo, J.H., Zhang, X.C., and Sastry, A.M.: Implementing realistic geometry and measured diffusion coefficients into single particle electrode modeling based on experiments with single LiMn2O4 spinel particles. J. Electrochem. Soc. 158, A371 (2011).CrossRefGoogle Scholar
Hun, J., Chung, M., Park, M., Woo, S., Zhang, X., and Marie, A.: Generation of realistic particle structures and simulations of internal stress: A numerical/AFM study of LiMn2O4 particles. J. Electrochem. Soc. 158, A434 (2011).CrossRefGoogle Scholar
Roberts, S.A., Brunini, V.E., Long, K.N., and Grillet, A.M.: A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in lithium-ion electrodes. J. Electrochem. Soc. 161, F3052 (2014).CrossRefGoogle Scholar
Mendoza, H., Roberts, S.A., Brunini, V.E., and Grillet, A.M.: Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures. Electrochim. Acta 190, 1 (2016).CrossRefGoogle Scholar
Zhao, K., Pharr, M., Cai, S., Vlassak, J.J., and Suo, Z.: Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94 (2011).CrossRefGoogle Scholar
Xu, R. and Zhao, K.: Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries. Extreme Mech. Lett. (2015). doi: 10.1016/j.eml.2015.10.004.Google Scholar
Attard, M.M.: Finite strain–isotropic hyperelasticity. Int. J. Solids Struct. 40, 4353 (2003).CrossRefGoogle Scholar
Larché, F.C. and Cahn, J.W.: Overview no. 41 the interactions of composition and stress in crystalline solids. Acta Metall. 33, 331 (1985).CrossRefGoogle Scholar
Christensen, J.: Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 157, A366 (2010).CrossRefGoogle Scholar
Kim, G.H., Smith, K., Lee, K.J., Santhanagopalan, S., and Pesaran, A.: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. J. Electrochem. Soc. 158, A955 (2011).CrossRefGoogle Scholar
Salvadori, A., Grazioli, D., and Geers, M.G.D.: Governing equations for a two-scale analysis of Li-ion battery cells. Int. J. Solids Struct. 59, 90 (2015).CrossRefGoogle Scholar
Comsol: Comsol Multiphysics: Version 4.4. (2013).Google Scholar
Ebner, M., Geldmacher, F., Marone, F., Stampanoni, M., and Wood, V.: X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845 (2013).CrossRefGoogle Scholar
Ebner, M., Marone, F., Stampanoni, M., and Wood, V.: Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716 (2013).CrossRefGoogle ScholarPubMed
Joos, J., Carraro, T., Weber, A., and Ivers-Tiffée, E.: Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. J. Power Sources 196, 7302 (2011).CrossRefGoogle Scholar
Shearing, P.R., Howard, L.E., Jørgensen, P.S., Brandon, N.P., and Harris, S.J.: Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem. Commun. 12, 374 (2010).CrossRefGoogle Scholar
Wei, Y., Zheng, J., Cui, S., Song, X., Su, Y., Deng, W., Wu, Z., Wang, X., Wang, W., Rao, M., Lin, Y., Wang, C., Amine, K., and Pan, F.: Kinetics tuning of Li-ion diffusion in layered Li(Ni x Mn y Co z )O2 . J. Am. Chem. Soc. 137, 8364 (2015).CrossRefGoogle Scholar
Koyama, Y., Tanaka, I., Adachi, H., Makimura, Y., and Ohzuku, T.: Crystal and electronic structures of superstructural Li1−x [Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J. Power Sources 119, 644 (2003).CrossRefGoogle Scholar
Qaiser, N., Kim, Y.J., Hong, C.S., and Han, S.M.: Numerical modeling of fracture-resistant Sn micropillars as anode for lithium ion batteries. J. Phys. Chem. C 120, 6953 (2016).CrossRefGoogle Scholar
Winter, M. and Besenhard, J.O.: Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31 (1999).CrossRefGoogle Scholar
Courtney, I.A. and Dahn, J.R.: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).CrossRefGoogle Scholar
Garcıa, R.E., Chiang, Y.M., Carter, W.C., Limthongkul, P., and Bishop, C.M.: Microstructural modeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 152, A255 (2005).CrossRefGoogle Scholar
Supplementary material: PDF

Xu supplementary material

Figures S1-S3

Download Xu supplementary material(PDF)
PDF 2.5 MB