Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T21:12:59.900Z Has data issue: false hasContentIssue false

Compressive creep of dense Bi2Sr1.7CaCu2Ox

Published online by Cambridge University Press:  31 January 2011

J.L. Routbort
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
K.C. Goretta
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
D.J. Miller
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
D.B. Kazelas
Affiliation:
Materials and Components Technology Division, Argonne National Laboratory, Argonne, Illinois 60439-4838
C. Clauss
Affiliation:
Department of Condensed Matter Physics, Universidad de Sevilla, 41080 Sevilla, Spain
A. Domínguez-Rodríguez
Affiliation:
Department of Condensed Matter Physics, Universidad de Sevilla, 41080 Sevilla, Spain
Get access

Abstract

Dense polycrystalline Bi2Sr1.7CaCu2Ox (2212) was deformed from 780–835 °C in oxygen partial pressures, Po2, of 103 to 2 × 104 Pa. Results could be divided into two stress regimes: one at lower stress in which the steady-state creep rate, ∊, was proportional to stress, γ, having an activation energy of 990 ± 190 kJ/mole and being independent of PO2, and another at higher stress in which ∊ was proportional to σn, with n ≍ 5–6. Transmission electron microscopy supported the interpretation that in the lower-stress viscous regime, creep was controlled by diffusion, whereas dislocation glide and microcracking were responsible for strain accommodation at higher stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fang, Y., Chen, Nan, Danyluk, S., Goretta, K.C., Runde, M., Rothman, S.J., and Routbort, J.L., Appl. Phys. Lett. 60, 2291 (1992).CrossRefGoogle Scholar
2.Runde, M., Routbort, J.L., Rothman, S.J., Goretta, K.C., Mundy, J.N., Xu, X., and Baker, J.E., Phys. Rev. B 45, 7375 (1992).CrossRefGoogle Scholar
3.Goretta, K.C., Routbort, J.L., Biondo, A. C., Gao, Y., de Arellano-López, A.R., and Domínguez-Rodríguez, A., J. Mater. Res. 5, 2766 (1990).CrossRefGoogle Scholar
4.Chen, Nan, Thesis, Ph.D., Illinois Institute of Technology, Chicago, IL (1991).Google Scholar
5.Chen, Nan, Rothman, S.J., Routbort, J.L., and Goretta, K.C., J. Mater. Res. 7, 2308 (1992).CrossRefGoogle Scholar
6.Nash, A.S., Nash, P., Shi, H., Poeppel, R.B., and Goretta, K.C., Supercond. Sci. Technol. 3, 556 (1990).CrossRefGoogle Scholar
7.Ishizaki, K., Takata, M., and Seino, H., J. Mater. Sci. Lett. 9, 16 (1990).Google Scholar
8.Dou, S. X., Liu, H. K., Wang, J., and Bian, W. M., Supercond. Sci. Technol. 4, 21 (1991).CrossRefGoogle Scholar
9.Murayama, N., Sudo, E., Awano, M., Kani, K., and Torii, Y., Jpn. J. Appl. Phys. 27, L1856 (1988).CrossRefGoogle Scholar
10.Yoshizaki, R., Ikeda, H., Yoshikawa, K., and Tomita, N., Jpn. J. Appl. Phys. 29, L753 (1990).CrossRefGoogle Scholar
11.Bloom, I., Frommelt, J. R., Hash, M.C., Lanagan, M.T., Wu, C-T., and Goretta, K.C., Mater. Res. Bull. XXVI, 1269 (1991).CrossRefGoogle Scholar
12.Chu, C-Y., Routbort, J.L., Chen, Nan, Biondo, A. C., and Goretta, K.C., Supercond. Sci. Technol. 5, 306 (1992).CrossRefGoogle Scholar
13.Gervais, H., Pelissier, B., and Castaing, J., Rev. Int. Hautes Temp. Refract. 15, 43 (1978).Google Scholar
14.Hwu, Y., Marsi, M., Hwang, C., Seutjens, J., Larbalestier, D. C., Onellion, M., and Margaritondo, G., Appl. Phys. Lett. 57, 2139 (1990).CrossRefGoogle Scholar
15.Hwu, Y., Lozzi, L., La Rosa, S., Marsi, M., Onellion, M., Berger, H., Gozzo, F., Lévy, F., and Margaritondo, G., Solid State Commun. 80, 701 (1991).CrossRefGoogle Scholar
16.Lindberg, P. A. P., Shen, Z-X., Lindau, I., Spicer, W. E., Eom, C. B., and Geballe, T. H., Appl. Phys. Lett. 53, 529 (1988).CrossRefGoogle Scholar
17.Cheetham, A. K., Chippendale, A. M., and Hibble, S. J., Nature 333, 21 (1988).CrossRefGoogle Scholar
18.Nagano, H., Liang, R., Matsunaga, Y., Sugiyama, M., Itoh, M., and Nakamura, T., Jpn. J. Appl. Phys. 28, L364 (1989).CrossRefGoogle Scholar
19.Golden, S.J., Bloomer, T.E., Lange, F.F., Segadaes, A.M., Vaidya, K.J., and Cheetham, A. K., J. Am. Ceram. Soc. 74, 123 (1991).CrossRefGoogle Scholar