Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T22:00:34.519Z Has data issue: false hasContentIssue false

Comprehensive transmission electron microscopy study on Cu–Al intermetallic compound formation at wire bond interface

Published online by Cambridge University Press:  25 November 2014

In-Tae Bae*
Affiliation:
Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, Binghamton, New York 13902, USA
Dae Young Jung
Affiliation:
Small Scale Systems Integration and Packaging Center, State University of New York at Binghamton, Binghamton, New York 13902, USA
William T. Chen
Affiliation:
Advanced Semiconductor Engineering Inc., Sunnyvale, California 94085, USA
Scott Chen
Affiliation:
Advanced Semiconductor Engineering Inc., Sunnyvale, California 94085, USA
Jenny Chang
Affiliation:
Advanced Semiconductor Engineering Inc., Sunnyvale, California 94085, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Comprehensive intermetallic compound phase analysis at wire bond interfaces was performed for a side-by-side comparative study between 18 µm Pd-only coated Cu wire and 18 µm Pd-coated Cu wire followed by Au flash coating. Scanning electron microscopy and transmission electron microscopy results combined with nanobeam electron diffraction and structure factor calculation identified the formation of metastable θ′-CuAl2 and Cu9Al4 in both of the wire bonds before and after high temperature storage test. In particular, nanobeam electron diffraction and structure factor calculation unambiguously revealed that the two intermetallic compound phases grow in size after high storage temperature test in a manner that they maintain their epitaxial relationships that minimize lattice mismatch at the Cu/Al wire bond interface. Nanobeam electron diffraction and energy dispersive x-ray spectroscopy results found no significant Au flash coating effects in terms of intermetallic compound morphology, phase, and thermal evolution.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appelt, B.K., Tseng, A., Chen, C-H., and Lai, Y-S.: Fine pitch copper wire bonding in high volume production. Microelectron. Reliab. 51, 13 (2011).Google Scholar
Breach, C.D. and Wulff, F.W.: A brief review of selected aspects of the materials science of ball bonding. Microelectron. Reliab. 50, 1 (2010).Google Scholar
Khoury, S.L., Burkhard, D.J., Galloway, D.P., and Scharr, T.A.: A comparison of copper and gold wire bonding on integrated circuit devices. IEEE Trans. Compon., Hybrids, Manuf. Technol. 13, 673 (1990).CrossRefGoogle Scholar
Nguyen, L.T., McDonald, D., Danker, A.R., and Ng, P.: Optimization of copper wire bonding on Al-Cu metallization. IEEE Trans. Compon., Packag., Manuf. Technol., Part A 18, 423 (1995).CrossRefGoogle Scholar
Ho, H.M., Tan, J., Tan, Y.C., Toh, B.H., and Xavier, P.: Modelling energy transfer to copper wire for bonding in an inert environment. Proc. 7th Electronics Packaging Technology Conference (IEEE, Singapore, 2005), p. 292.Google Scholar
Hang, C.J., Song, W.H., Lum, I., Mayer, M., Zhou, Y., Wang, C.Q., Moon, J.T., and Persic, J.: Effect of electronic flame off parameters on copper bonding wire: Free-air ball deformability, heat affected zone length, heat affected zone breaking force. Microelectron. Eng. 86, 2094 (2009).Google Scholar
Shah, A., Mayer, M., Zhou, Y., Hong, S.J., and Moon, J.T.: In situ ultrasonic force signals during low-temperature thermosonic copper wire bonding. Microelectron. Eng. 85, 1857 (2008).CrossRefGoogle Scholar
Uno, T., Terashima, S., and Yamada, T.: Surface-enhanced copper bonding wire for LSI. Proc. 59th Electronic Components and Technology Conference (IEEE, San Diego, CA, 2009), p. 1486.Google Scholar
Kaimori, S., Nonaka, T., and Mizoguchi, A.: The development of Cu bonding wire with oxidation-resistant metal coating. IEEE Trans. Adv. Packag. 29, 227 (2006).Google Scholar
Kim, H-J., Lee, J.Y., Paik, K-W., Koh, K-W., Won, J., Choe, S., Lee, J., Moon, J-T., and Park, Y-J.: Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminium pad bondability. IEEE Trans. Compon. Packag. Technol. 26, 367 (2003).Google Scholar
Wulff, F.W., Breach, C.D., Stephan, D., Saraswati, T., and Dittmer, K.J.: Characterisation of intermetallic growth in copper and gold ball bonds on aluminium metallization. Proc. 6th Electronics Packaging Technology Conference (IEEE, Singapore, 2004), p. 348.Google Scholar
Drozdov, M., Gur, G., Atzmon, Z., and Kaplan, W.D.: Detailed investigation of ultrasonic Al-Cu wire-bonds: II. Microstructural evolution during annealing. J. Mater. Sci. 43, 6038 (2008).Google Scholar
Xu, H., Liu, C., Silberschmidt, V.V., and Chen, Z.: Growth of intermetallic compounds in thermosonic copper wire bonding on aluminium metallization. J. Electron. Mater. 39, 124 (2010).Google Scholar
Lu, Y.H., Wang, Y.W., Appelt, B.K., Lai, Y.S., and Kao, C.R.: Growth of CuAl intermetallic compounds in Cu and Cu(Pd) wire bonding. Proc. 61th Electronic Components and Technology Conference (IEEE, Lake Buena Vista, FL, 2011), p. 1481.Google Scholar
Hang, C.J., Wang, C.Q., Mayer, M., Tan, Y.H., Zhou, Y., and Wang, H.H.: Growth behaviour of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging. Microelectron. Reliab. 48, 416 (2008).Google Scholar
Xu, H., Liu, C., Silberschmidt, V.V., Pramana, S.S., White, T.J., and Chen, Z.: A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads. Scr. Mater. 61, 165 (2009).CrossRefGoogle Scholar
Yu, C-F., Chan, C-M., Chan, L-C., and Hsieh, K-C.: Cu wire bond microstructure analysis and failure mechanism. Microelectron. Reliab. 51, 119 (2011).Google Scholar
Bae, I-T., Jung, D.Y., and Du, Y.: Electron microscopy study on intermetallic compound formation in Cu-Al bond interface. Proc. 62nd Electronic Components and Technology Conference (IEEE, San Diego, CA, 2012), p. 1146.Google Scholar
Bae, I-T., Jung, D.Y., Chen, W.T., and Du, Y.: Intermetallic compound formation at Cu-Al wire bond interface. J. Appl. Phys. 112, 123501 (2012).Google Scholar
Qin, I., Xu, H., Clauberg, H., Cathcart, R., Acoff, V.L., Chylak, B., and Huynh, C.: Wire bonding of Cu and Pd coated Cu wire: bondability, reliability, and IMC formation. Proc. 61th Electronic Components and Technology Conference (IEEE, Lake Buena Vista, FL, 2011), p. 1489.Google Scholar
Williams, D.B. and Carter, C.B.: Low-temperature synthesis of Zn3P2 nanowire. In Transmission Electron Microscopy (Plenum, New York, NY, 1996), Chap. 18.Google Scholar
Bae, I-T., Vasekar, P., VanHart, D., and Dhakal, T.: J. Mater. Res. 26, 1464 (2011).Google Scholar
Uno, T. and Yamada, T.: Improving humidity bond reliability of copper bonding wires. Proc. 60th Electronic Components and Technology Conference (IEEE, Las Vegas, NV, 2010), p. 1725.Google Scholar
Xu, H., Qin, I., Clauberg, H., Chylak, B., and Acoff, V.L.: Behavior of palladium and its impact on intermetallic growth in palladium-coated Cu wire bonding. Acta Mater. 61, 79 (2013).Google Scholar
Xu, H., Liu, C., Silberschmidt, V.V., Pramana, S.S., White, T.J., Chen, Z., and Acoff, V.L.: Behavior of aluminium oxide, intermetallics and voids in Cu-Al wire bonds. Acta Mater. 59, 5661 (2011).Google Scholar
Abe, H., Kang, D.C., Yamamoto, T., Yagihashi, T., Endo, Y., and Saito, H.: Cu wire and Pd-Cu wire package reliability and molding compounds. Proc. 62nd Electronic Components and Technology Conference (IEEE, San Diego, CA, 2012), p. 1117.Google Scholar