Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T23:52:38.440Z Has data issue: false hasContentIssue false

Compound growth and microstructure of carbon nanotube

Published online by Cambridge University Press:  03 March 2011

Zaoli Zhang*
Affiliation:
Beijing Laboratory of Electron Microscopy, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, 100080 Beijing, People's Republic of China
Lian Ouyang
Affiliation:
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
Zujin Shi
Affiliation:
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
Zhennan Gu
Affiliation:
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
*
a)Address all correspondence to this author. Present address: Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany. e-mail: [email protected]
Get access

Abstract

The compound growth of single-walled carbon nanotube (SWCNT) and multiwalled carbon nanotube (MWCNT), which formed a nanotube cable, was achieved by the chemical vapor deposition of natural gas on an Fe catalyst supported on SiO2–Al2O3 hybrid materials at 950 °C. The microstructure of nanotubes was characterized by high-resolution transmission electron microscopy (HRTEM). The SWCNTs encapsulated inside MWCNTs can be two, three, or even more in quantity with a diameter range from 1.0 nm to 2.0 nm. The diameter of SWCNT is controlled by the size of the catalyst nanoparticles. Some bundles of SWCNT and double-walled nanotubes were also found. The possible mechanism of compound growth is briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Bethune, D.S., Kiang, C.H., DeVries, M., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363, 605 (1993).CrossRefGoogle Scholar
3.Journet, C., Maser, W.K., Bernier, P., Loiseau, A., de, M.L. la Chapelle, Lefrant, S., Deniard, P., Lee, R., and Fischer, J.E., Nature 388, 756 (1997).CrossRefGoogle Scholar
4.Thess, A., Lee, R., Nikolaev, P., Dai, H.J., Petit, P., Robert, J., Xu, C.H., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E., Science 273, 483 (1996).CrossRefGoogle Scholar
5.Fan, S.S., Chapline, M., Franlin, N., Tombler, T., Cassell, A.M., and Dai, H.J., Science 283, 512 (1999).CrossRefGoogle Scholar
6.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
7.Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, W.Y., Li, W.Z., and Qian, L.X., Nature 394, 631 (1998).CrossRefGoogle Scholar
8.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., and Siegal, M.P., Science 282, 1105 (1998).CrossRefGoogle Scholar
9.Kong, J., Cassell, A.M., and Dai, H.J., Chem. Phys. Lett. 292, 567 (1998).CrossRefGoogle Scholar
10.Cheng, H.M., Li, F., Su, G., Pan, H.Y., He, L.L., Sun, X., and Dresselhaus, M.S., Appl. Phys. Lett. 72, 3282 (1998).CrossRefGoogle Scholar
11.Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., and Smalley, R.E., Chem. Phys. Lett. 296, 195 (1998).CrossRefGoogle Scholar
12.Flahaut, E., Govindaraj, A., Peigney, A., Laurent, Ch., and Rao, C.N., Chem. Phys. Lett. 300, 236 (1999).CrossRefGoogle Scholar
13.Peigney, A., Laurent, Ch., Dobigeon, F., and Rousset, A., J. Mater. Res. 12, 613 (1997).CrossRefGoogle Scholar
14.Cassell, A.M., Raymakers, J.A., Kong, J., and Dai, H.J., J. Phys. Chem. B 103, 6484 (1999).CrossRefGoogle Scholar
15.Zhu, H.W., Xu, C.L., Wu, D.H., Wu, B.Q., Vajtai, R., and Ajayan, P.M., Science 296, 884 (2002).CrossRefGoogle Scholar
16.Tibbetts, G.G., Appl. Phys. Lett. 42, 666 (1983).CrossRefGoogle Scholar
17.Baker, R.T.K. and Harris, P.S., Formation of Filamentous Carbon in Chemistry and Physics of Carbon 14 (Marcel Dekker, New York, 1978), p. 83.Google Scholar
18.Baker, R.T.K., Carbon 27, 315 (1989).CrossRefGoogle Scholar
19.Dai, H.J., Rinzler, A.G., Nikolaev, P., Thess, A., Colbert, D.T., and Smalley, R.E., Chem. Phys. Lett. 260, 471 (1996).CrossRefGoogle Scholar
20.Sinnott, S.B., Andrews, R., Qian, D., Rao, A.M., Mao, Z., Dickey, E.C., and Derbyshire, F., Chem. Phys. Lett. 315, 25 (1999).CrossRefGoogle Scholar
21.Whitby, R.L.D., Hsu, W.K., Watts, P.C.P., Kroto, H.W., Walton, D.R.M., and Boothroyd, C.B., Appl. Phys. Lett. 79, 4574 (2001).CrossRefGoogle Scholar