Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T13:03:28.732Z Has data issue: false hasContentIssue false

Compositional tuning of the strain-induced structural phase transition and of ferromagnetism in Bi1−xBaxFeO3−δ

Published online by Cambridge University Press:  13 May 2011

Charlee J.C. Bennett
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Hyun Sik Kim
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
Maria Varela
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Michael D. Biegalski
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Dae Ho Kim
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and Department of Physics, Tulane University, New Orleans, Louisiana 70118
David P. Norton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Harry M. Meyer III
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Hans M. Christen*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Recent studies by a number of research groups have shown that the structure of epitaxial BiFeO3 (BFO) films changes drastically as a function of substrate-induced biaxial compression, with the crystal structure changing from one being nearly rhombohedral (R-like) to one being nearly tetragonal (T-like), where the “T-like” structure is characterized by a highly enhanced c/a ratio of out-of-plane c to in-plane a lattice parameters. In this work, we show that the critical compressive strain σc necessary to induce this transition can be reduced significantly by substituting 10% Ba for Bi [Bi0.9Ba0.1FeO3−δ (BBFO)] and that the “T-like” phase in both BBFO and BFO is stable up to the decomposition temperatures of the films in air. Furthermore, our results show that the BBFO solid solution shows clear ferromagnetic properties in contrast to its undoped BFO counterpart.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
2.Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).CrossRefGoogle Scholar
3.Ricinschi, D., Yun, K.-Y., and Okuyama, M.: A mechanism for the 150 μC cm−2 polarization of BiFeO3 films based on first-principles calculations and new structural data. J. Phys. Condens. Matter 18, L97 (2006).CrossRefGoogle Scholar
4.Béa, H., Dupé, B., Fusil, S., Mattana, R., Jacquet, E., Warot-Fonrose, B., Wilhelm, F., Rogalev, A., Petit, S., Cros, V., Anane, A., Petroff, F., Bouzehouane, K., Geneste, G., Dkhil, B., Ponomareva, I., Bellaiche, L., Bibes, M., and Barthélémy, A.: Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).CrossRefGoogle Scholar
5.Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.-H., Kumar, A., Wang, C.H., Melville, A., Adamo, C., Sheng, G., Chu, Y.-H., Ihlefeld, J.F., Enri, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., and Ramesh, R.: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).CrossRefGoogle ScholarPubMed
6.Hatt, A.J., Spaldin, N.A., and Ederer, C.: Strain-induced isosymmetric phase transition in BiFeO3. Phys. Rev. B 81, 054109 (2010).CrossRefGoogle Scholar
7.Kim, D.H., Lee, H.N., Biegalski, M.D., and Christen, H.M.: Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films. Appl. Phys. Lett. 92, 012911 (2008).CrossRefGoogle Scholar
8.Jang, H.W., Baek, S.H., Ortiz, D., Folkman, C.M., Das, R.R., Chu, Y.H., Schafer, P., Zhang, J.X., Choudhury, S., Vaithyanathan, V., Chen, Y.B., Felker, D.A., Biegalski, M.D., Rzchowski, M.S., Pan, X.Q., Schlom, D.G., Chen, L.Q., Ramesh, R., and Eom, C.B.: Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys. Rev. Lett. 101, 107602 (2008).CrossRefGoogle ScholarPubMed
9.Xu, G., Hiraka, H., Shirane, G., Li, J., Wang, J., and Viehland, D.: Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl. Phys. Lett. 86, 182905 (2005).CrossRefGoogle Scholar
10.Biegalski, M.D., Dörr, K., Kim, D.H., and Christen, H.M.: Applying uniform reversible strain to epitaxial oxide films. Appl. Phys. Lett. 96, 151905 (2010).CrossRefGoogle Scholar
11.Liu, H., Yang, P., Yao, K., and Wang, J.: Twinning rotation and ferroelectric behavior of epitaxial BiFeO3 (001) thin film. Appl. Phys. Lett. 96, 012901 (2010).CrossRefGoogle Scholar
12.Christen, H.M., Nam, J.H., Kim, H.S., Hatt, A.J., and Spaldin, N.A.: Phys. Rev. B (in press).Google Scholar
13.Van Hook, H.J.: Oxygen stoichiometry in the compound BaFeO3-x. J. Phys. Chem. 68, 3786 (1964).CrossRefGoogle Scholar
14.Khomchenko, V.A., Kiselev, D.A., Selezneva, E.K., Vieira, J.M., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., and Kholkin, A.L.: Weak ferromagnetism in diamagnetically-doped Bi1−xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics. Mater. Lett. 62, 1927 (2008).CrossRefGoogle Scholar
15.Khomchenko, V.A., Kopcewicz, M., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., Vieira, J.M., and Kholkin, A.L.: Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1−xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics. J. Phys. D: Appl. Phys. 41, 102003 (2008).CrossRefGoogle Scholar
16.Matsui, T., Daido, S., Fujimura, N., Yoshimura, T., Tsuda, H., and Morii, K.: Effect of Bi substitution on the magnetic and dielectric properties of epitaxially grown BaFe0.3Zr0.7O3−δ thin films on SrTiO3 substrates. J. Phys. Chem. Solids 68, 1515 (2007).CrossRefGoogle Scholar
17.Khomchenko, V.A., Kiselev, D.A., Vieira, J.M., Jian, L., Kholkin, A.L., Lopes, A.M.L., Pogorelov, Y.G., Araujo, J.P., and Maglione, M.: Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 103, 024105 (2008).CrossRefGoogle Scholar
18.Feng, H.-J. and Liu, F.-M.: Electronic structures and magnetoelectric properties of tetragonal BaFeO3: An ab initio density-functional theory study. Chin. Phys. B 17, 1874 (2008).Google Scholar
19.Lucchini, E., Meriani, S., and Minichelli, D.: An x-ray study of two phases of BaFeO3-x. Acta Crystallogr. B (Struct. Cryst. and Cryst. Chem.) B29, 1217 (1973).CrossRefGoogle Scholar
20.Mori, K., Kamiyama, T., Kobayashi, H., Oikawa, K., and Ikeda, S.: Structural evidence for the charge disproportionation of Fe4+ in BaFeO3-δ. J. Phys. Soc. Jpn. 72, 2024 (2003).CrossRefGoogle Scholar
21.Taketani, E., Matsui, T., Fujimura, N., and Morii, K.: Effect of oxygen deficiencies on magnetic properties of epitaxial grown BaFeO3 thin films on (100) SrTiO3 substrates. IEEE Trans. Magn. 40, 2736 (2004).CrossRefGoogle Scholar
22.Callender, C., Das, R., Hebard, A.F., Budai, J.D., and Norton, D.P.: Ferromagnetism in pseudocubic BaFeO3 epitaxial films. Appl. Phys. Lett. 92, 012514 (2008).CrossRefGoogle Scholar
23.Christen, H.M. and Eres, G.: Recent advances in pulsed laser deposition of complex oxides. J. Phys. Condens. Matter 20, 264005 (2008).CrossRefGoogle ScholarPubMed
24.Chakoumakos, B.C., Schlom, D.G., Urbanik, M., and Luine, J.: Thermal expansion of LaAlO3 and (La,Sr)(Al,Ta)O3, substrate materials for superconducting thin-film device applications. J. Appl. Phys. 83, 1979 (1998).CrossRefGoogle Scholar
25.Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., and McIntyre, N.S.: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564 (2004).CrossRefGoogle Scholar
26.Takano, M. and Takeda, Y.: Electronic state of Fe4+ ions in perovskite-type oxides. Bull. Inst. Chem. Res. Kyoto Univ. 61, 406 (1983).Google Scholar
27.Li, J.Q., Masui, Y., Park, S.K., and Tokura, Y.: Charge ordered states in La1-xSrxFeO3. Phys. Rev. Lett. 79, 297 (1997).CrossRefGoogle Scholar
28.Goodenough, J.B.: Magnetism and the Chemical Bond (Interscience-Wiley, New York, 1963).Google Scholar