Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:57:23.510Z Has data issue: false hasContentIssue false

Composition and crystal structure parameters of single crystals (Bi, Pb)2Sr2(Ca1−xRx)Cu2O8+δ (R = Y, Er, Ho, Tm, and Yb)

Published online by Cambridge University Press:  31 January 2011

A.S. Ilyushin
Affiliation:
Physics Department, Moscow State University, Moscow 117234, Russia
L. Shi
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
L.I. Leonyuk
Affiliation:
Geology Department, Moscow State University, Moscow 117234, Russia
B.M. Mustafa
Affiliation:
Physics Department, Moscow State University, Moscow 117234, Russia
I.A. Nikanorova
Affiliation:
Physics Department, Moscow State University, Moscow 117234, Russia
S.V. Red'ko
Affiliation:
Physics Department, Moscow State University, Moscow 117234, Russia
Y. Jia
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
A.G. Vetkin
Affiliation:
Geology Department, Moscow State University, Moscow 117234, Russia
G. Zhou
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
I.V. Zubov
Affiliation:
Physics Department, Moscow State University, Moscow 117234, Russia
Get access

Abstract

To correlate structural and compositional parameters in the bismuth 2212 system, single crystals with the composition (Bi1−yPby)2Sr2(Ca1−xRx)Cu2O8+δ (R = Y, Er, Ho, Tm, and Yb; y = 0, 0.1; 0 ≤ x ≤ 0.5) have been studied at room temperature by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The main results are as follows: (i) The actual content, x, of R (R = Y, Er) in samples is in significant excess over its content x′ in the melt for x′ < 0.5. The opposite effect (but several times smaller) takes place for Ca. At x′ = 0.5, the x value practically coincides with x′. (ii) For all R under examination and x′ = 0.1, the value of x is within the limits of 0.43 ≤ x ≤ 0.51; i.e., x exceeds x′ several times. (iii) The total content of Ca, R (R = Y, Er), and Sr is close to 3 through the whole range 0 ≤ x′ ≤ 0.5. At x′ < 0.5 Ca is partly substituted for Sr, while R occupies only Ca crystallographic positions. Thus the actual formula of the samples is (Bi1-yPby)2+∊Sr2-z(Ca1+z-xRx)Cu2O8+δ. (iv) The evidence was received that the nonlinear dependence c(x) at x < 0.5 is connected with the partial substitution of Sr with Ca. The dependence of c, namely on the R = Y content in the denoted range of x, is close to linear with the slope ∂c/∂x = −0.67(2) Å/at.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Takamuku, K., Ikeda, K., Takata, T., Miyatake, T., Tomeno, I., Gotoh, S., Koshizuka, N., and Tanaka, S., Physica C 185189, 451 (1991).CrossRefGoogle Scholar
2Iwai, Y., Sato, N., Sasagawa, T., Sato, H., and Takata, M., Physica C 185189, 641 (1991).CrossRefGoogle Scholar
3Adachi, S., Adachi, H., Setsume, K., and Wasa, K., Physica C 185189, 671 (1991).CrossRefGoogle Scholar
4Munakata, F., Kawano, T., Yamauchi, H., and Inoue, Y., Physica C 185189, 795 (1991).CrossRefGoogle Scholar
5Kuroda, N., Yoshizaki, R., Fujikami, J., Akamatu, M., Ishigaki, T., and Asano, H., Physica C 185189, 807 (1991).CrossRefGoogle Scholar
6Ono, A., Jpn. J. Appl. Phys. 28, L493 (1989).CrossRefGoogle Scholar
7Rao, C. N.R., Nagarajan, R., Vijayaraghavan, R., Vas-anthacharyan, N. Y., Kulkarni, G.V., Rao, G. Ranga, Umarji, A.M., Somasundaram, P., Subbanna, G. N., Raju, A. R., Sood, A. K., and Chandrabhas, N., Supercond. Sci. Technol. 3, 242 (1990).CrossRefGoogle Scholar
8Manivannan, V., Gopalakrishnan, J., and Rao, C. N. R., Phys. Rev. B 43, 8686 (1991).CrossRefGoogle Scholar
9Kiemel, R., Wischert, W., and Kemmler-Sack, S., Phys. Status Solidi B 156, 339 (1989).CrossRefGoogle Scholar
10Tarascon, J. M., Barboux, P., Hull, G. W., Ramesh, R., Greene, L. H., Giroud, M., Hedge, M. S., and McKinnon, W. R., Phys. Rev. B 39, 4316 (1989).Google Scholar
11Sampathkumaran, E. V., Sastry, M. D., and Kadam, R. M., Physica C 159, 267 (1989).Google Scholar
12Ganguli, A. K., Nagarajan, R., Nanjundaswamy, K. S., and Rao, C. N. R., Mater. Res. Bull. XXIV, 103 (1989).Google Scholar
13Tamegai, T., Koda, K., Suzuki, K., Ichihara, M., Sakai, F., and lye, Y., Jpn. J. Appl. Phys. 28, L112 (1989).Google Scholar
14Yochizaki, R., Fujikami, J., Ishigaki, T., and Asano, H., Physica C 171, 315 (1990).Google Scholar
15Sequeira, A., Rajagopal, H., Sastry, P. V. P. S. S., Yakhmi, J. V., and Iyer, R.M., Physica B 174, 367 (1991).Google Scholar
16Grader, G.S., Gyorgy, E.M., Gallagher, P.K., O'Bryan, H.M., Johnson, D. W. Jr., Sunshine, S., Zahurak, S. M., Jin, S., and Sherwood, R. C., Phys. Rev. B 38, 757 (1988).Google Scholar
17Moto, A., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. 28, LI144 (1989).CrossRefGoogle Scholar
18Shweitzer, T., Miiller, R., Bohac, P., and Gaucker, L. J., Supercond. II, 23 (1990).Google Scholar
19Sasakura, H., Nakahigashi, K., Minamigawa, S., Kogachi, M., Nakanishi, S., Fukuoka, N., and Yanase, A., Jpn. J. Appl. Phys. 28, L1769 (1989).Google Scholar
20Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).Google Scholar
21Zhang, Y., Inorg. Chem. 21, 3866 (1982).Google Scholar